19.03.2015 JohnBurger:Demo/x86/TSS - OSDev Wiki

JohnBurger:Demo/x86/TSS

From OSDev Wiki
Revision as of 00:30, 10 April 2014 by Johnburger (Talk | contribs)
(diff) <= Older revision | Latest revision (diff) | Newer revision — (diff)

Although the Task State Segment 1s (as described) a Segment, it's actually merely the definition for the
beginning of a Segment. Intel wisely decided to let (nearly*) the rest of the Segment be used for other
stuff relating to the Task that it holds the state for - a perfect example 1s the current Floating Point Unit
state.

This Demonstrator doesn't handle the Floating Point execution Unit (FPU) at all - adding that is a project
for the reader! There are two strategies:

= On every task switch, just before executing the IMp that switches Tasks, first dump the current
FPU's state to RAM just above the TSS structure. And on Task resume, recover the FPU state and
let it resume.

This has the advantage of simplicity, but a bigger disadvantage: many Floating Point operations take a
while to complete, and before an FPU store operation can start it needs to finish what it's doing. Worse,
often there aren't many Tasks even using the FPU - it may very well be that the Task resuming operation
of the FPU was the very one that dumped its state a few Task Switches ago!

= To help this latter case, Intel defined a Flag (Ts in cre) and an Exception. On every hardware Task
Switch, the Flag is set to indicate that a Task has been switched. On every Floating Point
operation that flag is tested: if it is set, the CPU raises an INT 7 - Coprocessor Not Available
exception. That fault handler can quickly determine if it's inside a different Task than what was
previously using the FPU: if not, do nothing; if so, only now save the FPU state and recover the
new Task's FPU state.

* And what did I mean by (nearly) above? One of the things that a TSS can do is to define which I/O
ports a Task can access. If it is a Supervisor Task, it can (and should) access all available ports - for
example, the Interrupt Acknowledge ports on the PICs. A User Task, however, can do immeasurable
damage if it could access any port it liked. To that end, a TSS can have a bitmap (. I0Map below) that
defines which bits the Task is allowed to access - anything else will result in a General Protection Fault.
That bitmap is defined as part of the TSS - an array of bits from .10Map to the Limit of the TSS.

Demo/x86/TSS.inc

;5 X86/TSS.1nc

s

5 This module defines the Task State Segment (the 32-bit one, anyway).
x86.TSS.Flags.Trap EQU 0000_0000_0000_0001b

STRUC x86.TSS

http://wiki.osdev.org/index.php?title=JohnBurger:Demo/x86/T SS&oldid=16021&printable=yes 1/2

19.03.2015 JohnBurger:Demo/x86/TSS - OSDev Wiki

+ .Back RESW 1 ; Back-link to calling T¢
5 RESW 1

+ .ESP® RESD 1 ; Stack @ pointer
. .SS@ RESW 1

| RESW 1

. .ESP1 RESD 1 ; Stack 1 pointer
. .ss1 RESW 1

5 RESW 1

+ .ESP2 RESD 1 ; Stack 2 pointer
| .SS2 RESW 1

| RESW 1

. .CR3 RESD 1 ;5 Page Directory Base Rec
. LEIP RESD 1

 .EFlags RESD 1

' .EAX RESD 1

. LECX RESD 1

. .EDX RESD 1

. .EBX RESD 1

. .ESP RESD 1

. .EBP RESD 1

 LESI RESD 1

. .EDI RESD 1

. .ES RESW 1

; RESW 1

. .CS RESW 1

5 RESW 1

+.SS RESW 1

: RESW 1

. .DS RESW 1

| RESW 1

. .FS RESW 1

5 RESW 1

© .GS RESW 1

: RESW 1

. .LDT RESW 1

| RESW 1

+ .Flags RESW 1

. .IOMap RESW 1

5 ENDSTRUC

Retrieved from "http://wiki.osdev.org/index.php?title=JohnBurger:Demo/x86/TSS&oldid=16021"

http://wiki.osdev.org/index.php?title=JohnBurger:Demo/x86/T SS&oldid=16021&printable=yes 2/2

