25.02.2015 Xarnze.com

Tutorial: Entering User mode 4 months ago
by Aaron

If you are creating your own operating system or are interested in how to get from Ring 0 (Kernel
mode) to Ring 3 (user mode) then the following tutorial is for you.

Required Knowledge

In order to use this tutorial a knowledge of operating systems is assumed, in addition to this your kernel
will need to have a working GDT, IDT, and a video driver of some description.

Whats covered?

This tutorial covers getting to user mode (ring 3) but does not yet cover system calls so you will only be
able to switch to ring 3 (user mode) but you will not be able to switch back, in addition to ring switching
we will cover creating and installing a TSS.

Creating the TSS (Task State Segment)

First off we need to create a TSS (Task State-Segment) this is just a special entry in the GDT that allows
the CPU to jump back to ring 0, for now you can just use the TSS bellow if you dona€™t have one.

void install_tss(int cpu_no){
// now fill each value
// set values necessary
sys_tss.ss@ = 0x10;
// now set the IO bitmap (not necessary, so set above limit)

sys_tss.iomap = (unsigned short) sizeof(tss_struct);

And the TSS structure that you will need is: (this should go in a header file e.g. tss.h)

https://xarnze.com/posts/post/T utorial:%20Entering%20User%20mode 1/3

25.02.2015 Xarnze.com

typedef volatile struct strtss{
unsigned short link;
unsigned short link_h;
unsigned long esp0;
unsigned short ss@;
unsigned short ss@_h;
unsigned long espl;
unsigned short ssl;
unsigned short ssl_h;
unsigned long espZ;
unsigned short ss2;
unsigned short ss2_h;
unsigned long cr3;
unsigned long eip;
unsigned long eflags;
unsigned long eax;
unsigned long ecx;
unsigned long edx;
unsigned long ebx;
unsigned long esp;
unsigned long ebp;
unsigned long esi;
unsigned long edi;
unsigned short es;
unsigned short es_h;
unsigned short cs;
unsigned short cs_h;
unsigned short ss;
unsigned short ss_h;
unsigned short ds;
unsigned short ds_h;
unsigned short fs;
unsigned short fs_h;
unsigned short gs;
unsigned short gs_h;
unsigned short 1dt;
unsigned short 1dt_h;
unsigned short trap;
unsigned short 1iomap;
}__attribute__((packed)) tss_struct;

tss_struct sys_tss; //Define the TSS as a global structure

You will then need to set up some user mode GDT code segment and data segment like so:

gdt_set_gate(3, 0, OxFFFFFFFF, OxFA, @xCF); // User mode code segment gdt_set
_gate(4, 0, OxFFFFFFFF, @xF2, OxCF); // User mode data segment

Then set the GDT entry for the TSS:

https://xarnze.com/posts/post/Tutorial:%20Entering%20User %20mode

25.02.2015 Xarnze.com

unsigned long addr=Cunsigned long)tss;
int size = sizeof(tss_struct)+l; gdt_set_gate(5,addr,addr+size,0x89,0xCF);

Getting to user mode

Now you should have a valid TSS and a running kernel so we can how make the jump to User Mode.

void switch_to_user_mode() {
// Set up a stack structure for switching to user mode.
asm volatile(" \
cli; \
mov $0x23, %ax; \
mov %ax, %ds; \
mov %ax, %es; \
mov %ax, %fs; \
mov %ax, %gs; \
\
mov %esp, %eax; \
pushl $0x23; \
pushl %eax; \
pushf; \
mov $0x200, %eax; \
push %eax; \
pushl $0x1B; \
push $1f; \
iret; \ 1:\
")

All this code does is setup the CPU for jumping into user mode and then jump to the address at the end
of this code, once it has done that you are in user mode! However any interrupts will cause a exception
in you kernel at some level depending on how its setup.

Whats Next?

You may wish to add some systemcalls so that your user mode code can place some text on the screen
or even take user input.

© 2012 Aaron Polley. All Rights Reserved.

https://xarnze.com/posts/post/T utorial:%20Entering%20User%20mode 3/3

