25.02.2015 eXtensible Host Controller Interface - OSDev Wiki

eXtensible Host Controller Interface

From OSDev Wiki

eXtensible Host Controller Interface (xHCI) defines a register-level description of a Host Controller for
Universal Serial bus (USB), which is capable of interfacing to USB 1.x, 2.0, and 3.0 compatible devices.

Contents

= | Technical Details

2 Capability Registers
3 Operational Registers
4 Port Registers

5 Runtime Registers

6 Doorbell Registers

7 Virtual Registers

Technical Details

The xHCI controller communicates with the operating system using memory mapped registers that can
be located by searching the PCI configuration space for a device with a specific Class ID, Subclass ID,
and Interface number. All xHCI controllers will have a Class ID of 0x0C, a Sublcass ID of 0x03, and an
Interface value of 0x30. The configuration space for this device will contain two Base Address
Registers: BARO and BAR1. These two 32-bit address fields combine to create a single 64-bit address
that points to the base address of the memory mapped registers for the controller.

Capability Registers

The capability registers are located at the address specified by the PCI configuration space.

Offset (Hex) Name Description

00 CAPLENGTH | Capability Register Length

02 HCIVERSION | Interface Version Number

04 HCSPARAMSI | Structural Parameters 1

08 HCSPARAMS?2 | Structural Parameters 2

0C HCSPARAMS3 | Structural Parameters 3

10 HCCPARAMS | Capability Parameters

14 DBOFF Doorbell Offset

18 RTSOFF Runtime Registers Space Offset

Operational Registers

http://wiki.osdev.org/EXtensible_Host_Controller_Interface 1/3

25.02.2015 eXtensible Host Controller Interface - OSDev Wiki

The operational registers are located after the capability registers in memory, and can be found by
adding the CAPLENGTH field to the base address specified in the PCI configuration space.

Offset (Hex) Name Description

00 USBCMD | USB Command

04 USBSTS | USB Status

08 PAGESIZE | Page Size

14 DNCTRL | Device Notification Control

18 CRCR Command Ring Control

30 DCBAAP | Device Context Base Address Array Pointer
38 CONFIG | Configure

Reading CRCR (or bits of it) provides '0'. Therefore, keep your own track of this address. Bit 0 of
CRCR is the Consumer Cycle State (CCS) flag.

Port Registers

At the end of the operational registers (at offset 0x400!), each port on the root hub is assigned a set of
registers. The number of entries in the port registers table is determined by the MaxPorts value in the
HCSPARAMSI register.

Offset (Hex) Name Description

00 PORTSC Port Status and Control

04 PORTPMSC | Port Power Management Status and Control
08 PORTLI Port Link Info

0C reserved

Runtime Registers

The runtime registers are located after the operational registers in memory, and can be found by adding
the RTSOFF field to the base address specified in the PCI configuration space.

Offset (Hex)| Name Description
00 MFINDEX Microframe Index
20 IR0-1023 | Interrupter Register Sets

Starting at offset 0x20, each interrupter register set defines the event ring memory addresses needed to
send and receive events and data to the USB bus.

Offset (Hex) Name Description

00 IMAN Interrupter Management

04 IMOD | Interrupter Moderation

08 ERSTSZ | Event Ring Segment Table Size

http://wiki.osdev.org/EXtensible_Host_Controller_Interface

2/3

25.02.2015 eXtensible Host Controller Interface - OSDev Wiki

10 ERSTBA | Event Ring Segment Table Base Address
18 ERDP Event Ring Dequeue Pointer
Doorbell Registers

The doorbell registers are located after the runtime registers in memory, and can be found by adding the
DBOFF field to the base address specified in the PCI configuration space. The length of the doorbell
register table is based on the number of ports specified in the MaxSlots field in the HCSPARAMSI
register above. Each doorbell register is 32-bits long, and is used to notify the controller that there are
pending operations to be performed on a specific device slot.

Virtual Registers

The xHCI specifications support "virtual" controllers that can be used to support multiple virtual
machines running on a single physical machine. These registers must be configured and managed by the
VM host, and effectively duplicate the registers above for use by the guest VMs.

Retrieved from "http://wiki.osdev.org/index.php?
title=EXtensible Host Controller Interface&oldid=17287"
Category: USB

= This page was last modified on 3 December 2014, at 15:36.
= This page has been accessed 5,238 times.

http://wiki.osdev.org/EXtensible_Host_Controller_Interface 3/3

