25.02.2015 VGA Fonts - OSDev Wiki

VGA Fonts

From OSDev Wiki

So you know how to display characters in text mode, and now you want to do it in graphics mode. It's
not complicated, but definitely more complex than writing and ASCII code at a specific offset in
memory. You'll have to do it pixel by pixel.

But how do you know what to draw? It's stored in data matrix called bitmap fonts.

Contents

1 Decoding of bitmap fonts
2 How to get fonts?
= 2.1 Store it in an array
= 2.2 Store itin a file
= 2.3 Get the copy stored in the VGA BIOS
= 2.4 Get from VGA RAM directly
3 Set VGA fonts
= 3.1 Set fonts via BIOS
= 3.2 Set fonts directly
4 Displaying a character
5 See Also
6 External Links

Decoding of bitmap fonts

How is a character stored in memory? It's quite simple, 0 encodes background, 1 encodes foreground
color. VGA fonts are always 8 bits wide so that each byte contains exactly one row. For letter 'A" in the
typical 8x16 font it would be (in binary):

...

100000000b byte ©
100000000h byte 1
100000000b byte 2
'00010000b byte 3
100111000b byte 4
©1101100b byte 5
111000110b byte 6
111000110b byte 7
11111118b byte 8
'11000110b byte 9

111000110b byte 10 :
111000110b byte 11 :
111000110b byte 12 :
10000000Oh byte 13 i
100000000b byte 14 !
'00000000b byte 15 !

http://wiki.osdev.org/VGA_Fonts 1/6

25.02.2015 VGA Fonts - OSDev Wiki

The full bitmap contains bitmaps for every character, thus it's 256*16 bytes, 4096 bytes long. If you
want to get the bitmap for a specific character, you have to multiply the ASCII code by 16 (number of
rows in a character), add the offset of your bitmap and you're ready to go.

How to get fonts?

There're several ways. You can have it in a file on your filesystem. You can hardcode it in an array. But
sometimes 4k is so much that you cannot afford, and reading a file is not an option (like in a boot
loader), in which case you'll have to read the one used by the card (to display text mode characters) from
VGA RAM.

Store it in an array

Easiest way, but increases your code by 4k. There are several sources that provide the entire font in
binary or source format so you do not need to manually write it out.

Store it in a file

Most modular way. You can use different fonts if you like. Downside you'll need a working filesystem
implementation.

Get the copy stored in the VGA BIOS

It's a standard BIOS call (no need to check it's persistence). If you're still in real mode, it's quite easy to
use.

;1in: es:di=4k buffer
sout: buffer filled with font

push ds

push es

;ask BIOS to return VGA bitmap fonts
mov ax, 1130h
mov bh, 6

int 10h

;copy charmap

push es

pop ds

pop es

mov si, bp

mov cx, 256*16/4
rep movsd

pop ds

Get from VGA RAM directly

Maybe you're already in protected mode, so cannot access BIOS functions. In this case you can still get
the bitmap by programming VGA registers. Be careful that the VGA always reserves space for 8x32
fonts so you will need to trim off the bottom 16 bytes of each character during the copy:

http://wiki.osdev.org/VGA_Fonts 2/6

25.02.2015 VGA Fonts - OSDev Wiki

;1n: edi=4k buffer
sout: buffer filled with font
sclear even/odd mode

mov dx, @3ceh
mov ax, 5
out dx, ax
smap VGA memory to ©A0000h
mov ax, 0406h
out dx, ax
;set bitplane 2
mov dx, 03c4h
mov ax, 0402h
out dx, ax
sclear even/odd mode (the other way, don't ask why)
mov ax, 0604h
out dx, ax
;copy charmap
mov esi, ©0A000Oh
mov ecx, 256
;copy 16 bytes to bitmap

0@: movsd
movsd
movsd
movsd
;Skip another 16 bytes
add esi, 16
loop @b
srestore VGA state to normal operation
mov ax, 0302h
out dx, ax
mov ax, 0204h
out dx, ax
mov dx, ©@3ceh
mov ax, 1005h
out dx, ax
mov ax, OEO6h
out dx, ax

It worth mentioning that it has to be done before you switch to VBE graphics mode, because VGA
registers are usually not accessible afterwards. This means you won't be able to map the VGA card's font
memory to screen memory, and you will read only garbage.

Set VGA fonts

If you're still in text mode and want the VGA card to draw different glyphs, you can set the VGA font.
It's worthless in graphics mode (because characters are displayed by your code there, not by the card), I
only wrote this section for completeness. Modifying the font bitmaps in VGA RAM isn't hard if you
read carefully what's written so far. I'll left it to you as a homework.

http://wiki.osdev.org/VGA_Fonts 3/6

25.02.2015 VGA Fonts - OSDev Wiki

Set fonts via BIOS
Hint: check Ralph Brown Interrupt list Int 10/AX=1110h.
Set fonts directly

Hint: use the same code as above, but swap source and destination for "movsd".

Displaying a character

And finally we came to the point where we can display a character. I'll assume you have a putpixel
procedure ready. We have to draw 8x16 pixels, one for every bit in the bitmap.

//this 1s the bitmap font you've Loaded
unsigned char *font;

void drawchar(unsigned char c, int x, int y, int fgcolor, int bgcolor)
{

int cx,cy;

int mask[8]={1,2,4,8,16,32,64,128};

unsigned char *gylph=font+(int)c*16;

(cy=0;cy<16;cy++){
(cx=0;cx<8;cx++)q
putpixel(glyph[cy]&mask[cx]?fgcolor:bgcolor, x+cx,

The arguments are straightforward. You may wonder why to subtract 12 from y. It's for the baseline:
you specify y coordinate as the bottom of the character, not counting the "piggy tail" in a glyph that goes

no o non_n

down (like in "p","g","q" etc.). I other words it's the most bottom row of letter "A" that has a bit set.

Although it's mostly useful to erase the screen under the glyph, in some cases it could be bad (eg.:
writing on a shiny gradiented button). So here's a slightly modificated version, that uses a transparent
background.

//this 1is the bitmap font you've Lloaded
unsigned char *font;

void drawchar_transparent(unsigned char ¢, int x, int y, int fgcolor)

{
int cx,cy;
int mask[8]={1,2,4,8,16,32,64,128};
unsigned char *gylph=font+(int)c*16;

(cy=0;cy<16;cy++){

http://wiki.osdev.org/VGA_Fonts 4/6

25.02.2015 VGA Fonts - OSDev Wiki
' (cx=0;cx<8;cx++)q
(glyph[cy]&mask[cx]) putpixel(fgcolor,x+cx,y+c)

As you can see, we have only foreground color this time, and the putpixel call has a condition: only
invoked if the according bit in the bitmap is set.

Of course the code above will be excruciatingly slow (mostly due to doing one pixel at a time, and
repeatedly recalculating the address for each pixel within the "putpixel()" function). For much better
performance, the code above can be optimised to use boolean operations and a "mask lookup table"
instead. For example (for an 8-bpp mode):

//this 1is the bitmap font you've Loaded
unsigned char *font;

void drawchar_8BPP(unsigned char c, int x, int y, int fgcolor, int bgcolc
{

void *dest;

uint32_t *dest32;

unsigned char *src;

int row;

uint32_t fgcolor32;

uint32_t bgcolor32;

fgcolor32 = fgcolor | (fgcolor << 8) | (fgcolor << 16) | (fgcolor
bgcolor32 = bgcolor | (bgcolor << 8) | (bgcolor << 16) | (bgcolor
src = font + ¢ * 16;
dest = videoBuffer + y * bytes per_line + Xx;
(row = @; row < 16; row++) {
(*src !'=0) {
mask _low = mask_table[*src][0];
mask_high = mask_table[*src][1];
dest32 = dest;
dest32[@] = (bgcolor32 & ~mask low) | (fgcolor32
dest32[1] = (bgcolor32 & ~mask_high) | (fgcolor3:

¥

Src++;
dest += bytes per_line;

void drawchar_transparent_8BPP(unsigned char c, int x, int y, int fgcolor

{
void *dest;
uint32 t *dest32;
unsigned char *src;

http://wiki.osdev.org/VGA_Fonts

-=

==

5/6

25.02.2015 VGA Fonts - OSDev Wiki

int row;
uint32_t fgcolor32;

fgcolor32 = fgcolor | (fgcolor << 8) | (fgcolor << 16) | (fgcolor
src = font + ¢ * 16;
dest = videoBuffer + y * bytes per_line + Xx;
(row = @; row < 16; row++) {
(*src 1= 0) {
mask_low = mask_table[*src][0];
mask_high = mask table[*src][1];
dest32 = dest;
dest32[0] (dest[@] & ~mask_low) | (fgcolor32 &
dest32[1] (dest[1] & ~mask_high) | (fgcolor32 ¢

SPC++;
dest += bytes per line;

In this case the address in display memory is only calculated once (rather than up to 128 times) and 8
pixels are done in parallel (which removes the inner loop completely).

The main downside for this approach is that you need a different function for each "bits per pixel",
except that 15-bpp and 16-bpp can use the same code. For worst case (32-bpp) the lookup table costs 8
KiB. The lookup table for 32-bpp can be re-used for 24-bpp, and for 4-bpp no lookup table is needed at
all. To support all standard bit depths that VBE is capable of; this gives a total of 5 versions of each
"draw character" function (4-bpp, 8-bpp, 15-bpp and 16-bpp, 24-bpp, 32-bpp) and 3 lookup tables (8-
bpp, 15-bpp and 16-bpp, 24-bpp and 32-bpp) which cost a combined total of 14 KiB of data if you use
static tables (rather than dynamically generating the desired lookup table if/when needed).

See Also

= VGA Hardware

External Links

s UNI-VGA (http://www.inp.nsk.su./~bolkhov/files/fonts/univga/) - A free Unicode VGA font

(.bdf)
= bdf2c (http://sourceforge.net/projects/bdf2¢/) - .bdf font to C source converter.

Retrieved from "http://wiki.osdev.org/index.php?title=VGA_Fonts&oldid=14524"
Categories: VGA | Video
= This page was last modified on 10 March 2013, at 23:16.

= This page has been accessed 16,129 times.

http://wiki.osdev.org/VGA_Fonts 6/6

