25.02.2015 Universal Serial Bus - OSDev Wiki

Universal Serial Bus

From OSDev Wiki

The Universal Serial Bus was first introduced in 1994 with the intention of replacing various specialized interfaces, and to
simplify the configuration of communication devices. The communication industry did not develop as the USB-IF foresaw,
but the various transfer modes that USB introduced allowed it to become one of the most popular standards in use today.

Virtually every modern computer supports USB.

Contents

=] Introduction
= 1.1 What this text covers
= 1.2 What this text does not cover
= 2 Host Controllers
= 2.1 USB 1.0 Host Controllers
= 2.2 USB 2.0 Host Controllers
= 2.3 USB 3.0 Host Controllers
= 3 Basic Concepts and Nomenclature
= 3.1 USB System
= 3.1.1 USB Device(s)
= 3.1.1.1 Functions
= 3.1.1.2 Hubs
= 3.1.2 USB Interconnect
= 3.1.3 USB Host
= 3.2 USB Communication Flow
= 3.2.1 Device Endpoints and Endpoint Numbers
= 3.2.2 Endpoint Zero
= 3.2.3 Pipes
= 3.2.4 Default Control Pipe
= 3.3 Basics of USB Transfers
= 3.3.1 Control Transfers
= 3.3.1.1 Maximum Data Payload Size
= 3.3.1.2 Transmission Errors
= 3.3.1.2.1 Too Much Data
= 3.3.1.2.2 Bus Errors
= 3.3.1.2.3 Halt Conditions
= 3.3.2 Bulk Data Transfers
= 3.3.2.1 Maximum Data Payload Size
= 3.3.2.2 Transmission Errors
= 3.3.3 Interrupt Data Transfers
= 3.3.3.1 Maximum Data Payload Size
= 3.3.3.2 Transmission Errors
= 3.3.4 Isochronous Data Transfers
= 3.3.4.1 Maximum Data Payload Size
= 3.3.4.2 Transmission Errors
= 4 Advanced USB Concepts
= 4.1 Distribution of Bus Access Time
= 4.1.1 Frames and Microframes
= 4.1.2 Bus Time Rationing
= 4.2 High-Speed, High-Bandwidth Endpoints
= 4.3 Supporting Isochronous Transfers
= 4.3.1 Synchronization
= 4.3.1.1 Asynchronous Endpoints
= 4.3.1.2 Synchronous Endpoints
= 4.3.1.3 Adaptive Endpoints
= 4.3.2 Handling Errors
= 5 USB Protocol
= 5.1 Packets
= 5.1.1 SYNC Field
= 5.1.2 Packet Identifier Field

http://wiki.osdev.org/Universal_Serial_Bus

1137

25.02.2015 Universal Serial Bus - OSDev Wiki

= 5.1.3 Address Fields
= 5.1.3.1 Address Field
= 5.1.3.2 Endpoint Field
= 5.1.4 Data Field
= 5.1.5 Cyclic Redundancy Checks
= 5.2 Handshakes
= 5.2.1 Handshake Packets
= 52.1.1 ACK
5.2.1.2 NAK
5.2.1.3 STALL
5.2.1.4NYET
5.2.1.5 ERR
= 5.2.2 Function/Host Response Circumstances
= 5.2.2.1 Function Response to IN Transactions
= 5.2.2.2 Host Response to IN Transactions
= 5.2.2.3 Function Response to OUT Transactions
= 5.2.2.4 Function Response to SETUP Transactions
= 5.3 PING Transaction Protocol
= 5.4 Data Toggle Synchronization
= 5.4.1 Successful transmissions
= 5.4.2 Failed or corrupted data transmissions
= 5.4.3 Failed or corrupted ACK handshake
= 5.5 USB Transfers Revisited
= 5.5.1 Control Transfers
= 5.5.2 Bulk and Interrupt Transfers
= 5.5.3 Isochronous Transfers
= 5.5.4 High-Speed, High-Bandwidth Isochronous Transfers
= 6 USB Device Framework
6.1 Functions, Configurations, Interfaces, and Endpoints
6.2 USB Device States
6.3 Remote Wakeup Capability
6.4 USB Device Enumeration
6.5 USB Device Requests
6.6 Standard Requests
= 6.6.1 SET_ADDRESS
= 6.6.2 GET_DESCRIPTOR
6.6.3 SET _DESCRIPTOR
6.6.4 GET CONFIGURATION
6.6.5 SET_CONFIGURATION
6.6.6 GET _INTERFACE
6.6.7 SET INTERFACE
6.6.8 CLEAR_FEATURE
6.6.9 SET FEATURE
6.6.10 GET_STATUS
= 6.6.10.1 Device Recipient
= 6.6.10.2 Interface Recipient
= 6.6.10.3 Endpoint Recipient
= 6.6.11 SYNCH FRAME
= 6.7 Standard USB Descriptors
= 6.7.1 DEVICE
= 6.7.2 DEVICE _QUALIFIER
6.7.3 CONFIGURATION
6.7.4 OTHER_SPEED CONFIGURATION
6.7.5 INTERFACE
6.7.6 ENDPOINT
= 6.7.7 STRING
= 7 Typical organization of system software
= 7.1 USB Device Drivers
7.2 USB Driver
7.3 USB Hub Driver
7.4 Host Controller Driver
7.5 Links
7.6 Forum Topics

http://wiki.osdev.org/Universal_Serial_Bus

2/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Introduction

Despite how attractive USB support is, the 650-page USB 2.0 specification manages to deter even some of the most driven
hobbyists (especially if English isn't their primary language). Not only is the USB 2.0 specification long, but it's a prerequisite
for the XHCI, EHCI, UHCI, and OHCI specifications, all of which must be implemented for full USB 3.0 support (if you only
want USB 1.0, you still need UHCI and OHCI). Furthermore, the USB specification defines a plethora of terms, some used
interchangeably and seemingly lazily; as a lengthy technical document, it is neither easy nor practical to flip back and forth to
clarify a confusing term or concept.

What this text covers

The truth is that a software developer doesn't need to read the entire USB 2.0 specification; there are sections specific to
hardware developers, for example. The information presented here attempts to summarize chapters 4, 5, and 8 through 10.

Chapter 11 is specific to hubs and is also essential for a full USB 2.0 implementation, however it is almost as long as chapters
4,5,8,9, and 10 combined, and could be regarded as the documentation for a specific (albeit special) class of USB devices.
Chapter 11 is covered thusly in its own wiki entry, USB Hubs. Even so, some concepts which pertain to USB hubs are briefly
discussed where relevant in this article.

Ideally, the text here will establish familiarity with the terms and concepts that a hobby OS developer needs to begin
implementing USB support and, if necessary, easily parse the USB specification without becoming intimidated by the amount
of information. At the very least, the system programmer should keep a copy of the USB 2.0 specification for reference while
working with USB-related hardware.

Fortunately, all of the necessary documentation is available for free (see Links (http://wiki.osdev.org/USB#Links)).
What this text does not cover

Please note that USB, unlike other standards like VGA or PCI, is agnostic of the hardware interface to the system bus (and, by
extension, to the operating system). Such an interface is provided by one or more USB host controllers and is defined by the
appropriate documentation. Therefore, one should not expect this text to discuss specifics or code samples (e.g., as one finds
in the wiki entries about VGA or PCI) detailing how the operating system initiates and maintains communication with USB
devices. Although such information may be found on wiki entries discussing a particular Host Controller Driver, those wiki
entries assume an understanding of the concepts and terms discussed here.

Host Controllers

The Host Controller is the USB interface to the host computer system. In other words, the host controller is what the system
software uses to communicate with USB devices.

USB 1.0 Host Controllers

Main article: Universal Host Controller Interface
Main article: Open Host Controller Interface

Intel brought USB 1.0 to the market with its Universal Host Controller Interface (UHCI), while Compaq, Microsoft, and
National Semiconductors did the same with their Open Host Controller Interface (OHCI). Naturally, the two interfaces are
incompatible, and to make things worse, VIA Technologies licensed Intel's UHCI standard, thereby ensuring that both
standards survived. Typically, an on-board chip set will contain a UHCI implementation, whereas a peripheral card typically
implements the OHCI standard (but this is by no means a guarantee).

USB 2.0 Host Controllers

Main article: Enhanced Host Controller Interface

In designing USB 2.0, the USB-IF insisted on a single implementation. That single implementation is Intel's Enhanced Host
Controller Interface (EHCI). However, even though the USB 2.0 specification requires that a USB 2.0 interface support
USB 1.0 devices, this doesn't mean that the EHCI must support USB 1.0 devices, and in fact, it doesn't. Each EHCI host
controller is accompanied by (usually several) UHCI and/or OHCI host controllers. When a USB 1.0 device is attached, the
EHCI simply hands control over to a companion controller. Refer to figure 1 for a simple block diagram implementation of
this behavior. Therefore, the system programmer must support all three standards in order to support USB 2.0.

http://wiki.osdev.org/Universal_Serial_Bus 3/37

25.02.2015 Universal Serial Bus - OSDev Wiki

The EHCI host controller only handles USB 1.0 devices if they are attached indirectly through a USB 2.0 hub. The specifics
of handling USB 1.0 devices attached to a USB 2.0 hub are briefly discussed and illustrated in the hubs section, and in more
detail in the wiki entry for USB Hubs. Note that some newer chipsets like the Intel 5-series chipsets do not have companion
controllers at all and instead have internal "rate matching" hubs that all USB devices go through.

USB 3.0 Host Controllers

Main article: eXtensible Host Controller Interface

In late 2008, the USB-IF released the USB 3.0 specifications. USB 3.0 C""gpa':i_‘”l'; Host | |High-Speed EHCI
host controllers are just starting to make their way into consumer e Host Controlle:
devices since NEC introduced the world's first “SuperSpeed USB 3.0
host controller” in May, 2009, techspot reports Port Reg Port Reg
(http://www.techspot.com/news/34763-nec-introduces-worlds-first-usb- +
30-host-controller.html) .
Port Routing Port Cwner
Logic Select

Intel is currently working on a USB 3.0 host controller specification
called the eXtensible Host Controller Interface (xHCI).

Transceiver

A Linux driver is available for reference here (http://git.kernel.org/?
p=linux/kernel/git/sarah/xhci.git;a=summary) developed by Sarah Sharp
at Intel.

Figure 1: Block Diagram of Port Routing Behavior

In 2009, NEC introduced the pPD720200 (http://www.am.necel.com/usb/product/upd720200.html) , a USB 3.0 host controller
compliant with Intel's draft xHCI specification.

On June 18th, 2010, Intel publicly released the xHCI specification.

Basic Concepts and Nomenclature

The USB is a polled bus, meaning the host controller must initiate all transfers. Do not mistake this to mean that the system
software must poll the USB. The host controller takes care of polling the bus and can be programmed to issue interrupts to the
OS whenever the bus needs attention.

USB System
A USB System consists of three discrete parts: the USB device(s), the USB
interconnect, and the USB host. Figure 2 illustrates a USB System. Foot Hub USE Host
I usE Function
USB DEViCC(S) = USE Hub
‘ - UEE Intexconnect

USB devices are classified as either a hub or a function (not to be confused
with a program procedure). Hubs provide additional attachment points, whereas

functions provide capabilities to the system. Some devices may implement Fumetion
several functions and an embedded hub in one physical package. These are
called compound devices. ﬁ
Function .
Function

Functions —
Hub Function

.

There are three speed classes of functions: Funstion Function

All functions understand the USB protocol, respond to standard operations (e.g,
configuration or reset), and describe capabilities to the USB host.

Function

= High-speed functions operate at up to 480 Mb/s. Figure 2: USB System [llustration

= Full-speed functions operate at up to 12 Mb/s.
= Low-speed functions operate at up to 1.5 Mb/s.

The original USB specification defined low- and full-speed devices, while USB 2.0 added high-speed devices. USB 3.0 will
add a fourth transfer speed of up to 5 Gb/s, called SuperSpeed.

Hubs

http://wiki.osdev.org/Universal_Serial_Bus 4/37

25.02.2015 Universal Serial Bus - OSDev Wiki

In a high-speed system, a high-speed hub plays a special role. Since the high-speed hub establishes a high-speed transfer rate
with the host, it must isolate any full- or low-speed signaling from both the host and any attached high-speed devices.

To better understand, consider that the EHCI controller is accompanied by one or more companion controllers, as illustrated in
figure 1 above. When a full- or low-speed device is attached directly to the root hub, the EHCI controller can relinquish
ownership of that specific port to a companion controller as seen in figure 3. However, if a high-speed hub is connected to a
port, as in Figure 4, then the EHCI controller must retain ownership of the port because it is a high-speed device. Now suppose
other high-speed devices are attached to the high-speed hub in figure 4; obviously the EHCI controller retains control as in
figure 5.

But what happens when a full- or low-speed device is connected to the high-speed hub in figure 5? If the EHCI controller
were to relinquish ownership of the port, the high-speed devices will no longer be able to operate at high-speed, if at all, as in
figure 6. Instead, the host controller and the hub support a special type of transaction called a split transaction. A split
transaction involves only the host controller and a high-speed hub; it is transparent to any devices. This scheme of using split-
transaction to support low- and full-speed devices on a high-speed hub is illustrated in figure 7.

Note that some newer chipsets like the Intel 5-series chipsets do not have companion controllers at all and instead have
internal "rate matching" hubs that all USB devices go through.

B

%
|

| | . | - ==

=== =i =B = =

Figure 3: Low- or Full- Figure 4: High-speed Figure 5: High-speed Figure 6: Incorrect

speed device hub connected to a devices connected to a illustration of Low- and
connected to a high- high-speed capable high-speed hub which ~ Full-speed devices on a
speed capable USB USB port is connected to a high- high-speed bus

port speed USB port

Figure 7: Correct
illustration of split
transactions allowing
Low- and Full-speed
devices on a high-
speed bus

USB Interconnect

The USB interconnect provides a connection from the USB device(s) to the USB host.

Physically, the USB interconnect is a tiered star topology. A maximum of seven tiers are

allowed, and the root hub occupies the first tier. Since compound devices contain an

embedded hub, a compound device cannot be attached in tier 7. Figure 8 illustrates a USB

topology (taken from Figure 4-1 of the USB 2.0 specifications). 1/ ;
Figure 8: USB Topology

USB Host

http://wiki.osdev.org/Universal_Serial_Bus 5/37

25.02.2015 Universal Serial Bus - OSDev Wiki

A USB system contains only one USB host. The host interfaces with the USB interconnect via a host controller. The host
includes an embedded hub called the root hub which provides one or more attachment points, or ports.

USB Communication Flow

Figure 9 illustrates the concepts of USB

communication flow and is taken from Figure 5-10 Host Client
of the USB 2.0 Specifications. Software

Device Endpoints and Endpoint Numbers p! | Lo

Each USB device contains a collection of A \ \, < Communication
endpoints. Every endpoint has the following Pipes L NE- Flows
characteristics:

= Bus access frequency/latency requirement

= Bandwidth requirement ; . Endpoints
. USEB Logical Device

= A unique device-determined identifier called e =

the endpoint number Interface
= Error handling behavior requirements Figure 9: Illustration of USB Communication Flow
= Maximum packet size the endpoint can send

or receive

= The transfer type of the endpoint

= Device-determined direction of data transfer:
= Input: from the device to the host
= Qutput: from the host to the device

As an example, consider an “all-in-one” printer/scanner device. Such a device may implement an endpoint number for printing

functionality, and a separate endpoint number for scanning functionality.

Although endpoints have a specific direction, two endpoints may have the same endpoint number but opposing data transfer

directions. All functions implement two such endpoints with the endpoint number 0. Only endpoints with the endpoint number
0 may be accessed as soon as the device is powered and has received a bus reset; all other endpoints are in an undefined state

until the device is configured.

Besides the two required endpoints, functions may implement additional endpoints as necessary, with the following
limitations:

= Low-speed functions may implement up to two additional endpoints.

= Full- and high-speed devices may implement up to 15 additional input endpoints and 15 additional output endpoints.
This is a physical limitation of the USB protocol and is discussed under Endpoint_Field.

Endpoint Zero

All USB devices implement input and output endpoints with an endpoint number of 0. These endpoints are collectively known
as the default control pipe. Endpoints with an endpoint number 0 are special in that they are accessible whenever the device

is attached, powered and has received a bus reset.

In the interest of backwards compatibility, all high-speed functions must support these endpoints even when connected to a
hub operating at full-speed. This means that high-speed devices must be able to reset at full-speed, as well as respond
successfully to standard requests at full-speed. The high-speed device is not, however, required to support its intended
functionality at full-speed. This allows USB 1.0 systems to identify a USB 2.0 device and alert the user if the device cannot
function properly at full-speed

Pipes

A pipe associates software on the host (specifically, a buffer on the host) with an endpoint on a device.
There are two kinds of pipe communication modes:
= Stream pipes impose no structure on the data being transferred. Stream pipes are always uni-directional in their

communication flow.
= Message pipes impose some structure on the data being transfered. Message pipes are bi-directional, however data

http://wiki.osdev.org/Universal_Serial_Bus

6/37

25.02.2015 Universal Serial Bus - OSDev Wiki

may predominantly transfer in one direction.
Pipes also have the following attributes:

= A claim on bus access and bandwidth usage
= A transfer type
= The associated endpoint's characteristics

Data flow in one pipe is independent of data flow in any other pipe. Most pipes are available after a device has been
configured, however the default control pipe always exists after a USB device is powered and has received a bus reset.

Default Control Pipe

The default control pipe is a special type of message pipe that is always accessible once a device is powered and has received
a bus reset. Thus, the default control pipe provides a means to identify and configure devices so that additional endpoints, if
any, are made available.

The information required to completely identify a device is associated with the default control pipe; such information falls into
the following categories:

= Standard information is common among all USB devices.
= Class information depends on the class of the USB device, as identified by the standard information.
= USB Vendor information is free for use by the hardware vendor.

Basics of USB Transfers

Most USB transactions consist of three packets:

= A token packet indicates the type and direction of the transaction, the device address, and an endpoint number.

= Depending on the direction of the transaction, either the host or the function sends a data packet (which may simply
indicate that there is no data to send).

= The receiving device responds with a handshake packet to indicate if the transfer was successful.

USB supports four basic types of data transfer which take place via pipes. A single pipe supports only (and exactly) one
transfer type for any given device configuration. That is, a function may provide a means to change the transfer type of a
device-implemented endpoint number.

Briefly, the four basic transfer types are:

= Control Transfers provide lossless transmissions and are used to configure a device. Thus, all USB devices must
support control transfers at least via the default control pipe.

= Bulk Data Transfers provide lossless, sequential transmissions and are typically used to transfer large amounts of data.

= Interrupt Data Transfers provide reliable, limited-latency transmissions typically needed by human input devices such
as a mouse or a joystick.

= Isochronous Data Transfers, also called Streaming Real-time Transfers, negotiate a required bandwidth and latency
when initializing the transfer. This transfer type is predominantly used for such applications as streaming audio. Since
data-delivery rate is considered more important than data integrity for this type of transfer, it does not provide any type
of error checking or correction mechanism.

Control Transfers

Control transfers support configuration/command/status type communication flow. The host initiates a control transfer with a
SETUP bus transaction to the function, which establishes details of the intended data transfer such as whether the host wishes
to send or receive data. Next, zero or more DATA transactions take place in the appropriate direction. Finally, a STATUS
transaction from the function to the host indicates whether the transfer was successful.

Clearly, control transfers adhere to a USB-defined structure, so it should come as no surprise that control transfers may only
be carried out via messages pipes.

Neither a function nor the host are guaranteed any specific latency or bandwidth for control transfers.

Maximum Data Payload Size

http://wiki.osdev.org/Universal_Serial_Bus 7137

25.02.2015 Universal Serial Bus - OSDev Wiki

An endpoint used for a control transfer specifies the maximum data payload size that it can accept or transmit to the bus. The
allowable maximum data payload sizes depend on the speed of the device:

= High-speed device endpoints may only select a maximum data payload size of 64 bytes.
= Full-speed device endpoints may select a maximum data payload size of 8, 16, 32, or 64 bytes.
= Low-speed device endpoints may only select a maximum data payload size of 8 bytes.

A control transfer always uses it's maximum data payload size for data payloads unless the data payload is less than the
maximum data payload size. That is, if an endpoint has a maximum data payload size of 64 bytes, and a control transfer
intends to transmit 100 bytes, the first data payload must contain 64 bytes and no less. The remaining 36 bytes are transferred
in the second payload and need not be padded to 64 bytes. When the host receives a data payload less than the maximum data
payload, the host may consider the transfer complete.

A SETUP transaction's data payload is always 8 bytes and thus receivable by the endpoint of any USB device. Consequently,
the host may query the appropriate descriptor from a newly-attached full-speed device during configuration in order to
determine the maximum data payload size for any endpoint; the host can then adhere to that maximum for any future
transmissions.

Transmission Errors

Too Much Data

When transferring from host to device, if the host sends more data than negotiated during the SETUP transaction (i.e., the
device receives more data than it expects; specifically, the host does not advance to the STATUS stage when the device
expects), the device endpoint halts the pipe.

When transferring from device to host, if the device sends more data than negotiated during the SETUP transaction (i.e., the
host receives an extra data payload, or the final data payload is larger than it should be), the host considers it an error and
aborts the transfer.

Bus Errors

In the event of a bus error or anomaly, an endpoint may receive a SETUP packet in the middle of a control transfer. In such a
case, the endpoint must abort the current transfer and handle the unexpected SETUP packet. This behavior should be
completely transparent to the host; the host should neither expect nor take advantage of this behavior.

Halt Conditions

A control endpoint may recover from a halt condition upon receiving a SETUP packet. If the endpoint does not recover from a
SETUP packet, it may need to be recovered via a different pipe. If an endpoint with the endpoint number 0 does not recover
with a SETUP packet, the host should issue a device reset.

Bulk Data Transfers

A pipe with a bulk transfer type provides:

= Access to the USB on a bandwidth-available basis
= Retry of transfers that encounter the occasional delivery failure
= Guaranteed data integrity, but no guaranteed bandwidth

The host controller gives bulk data transfers low priority; they are generally only processed when bandwidth is available,
however software may not assume that a control transfer will be processed before a bulk transfer. If multiple bulk transfers are
pending, the host controller may begin moving bulk transfers over the bus according to an implementation-dependent policy.
The system software may vary the bus time made available for a bulk transfer to a specific endpoint.

The USB does not impose any structure on the data content of a bulk transfer; thus, bulk transfers are carried via stream pipes.

Maximum Data Payload Size

An endpoint used for a bulk data transfer specifies the maximum data payload size that it can accept or transmit to the bus.
The allowable maximum data payload sizes depend on the speed of the device:

http://wiki.osdev.org/Universal_Serial_Bus 8/37

25.02.2015 Universal Serial Bus - OSDev Wiki

= High-sped device endpoints may only select a maximum data payload size of 512 bytes.
= Full-speed device endpoints may select a maximum data payload size of 8, 16, 32, or 64 bytes.
= Low-speed devices may not implement bulk endpoints.

Like control transfers, a bulk transfer endpoint must transmit data payloads of the maximum data payload size for that
endpoint with the exception of the last data payload in a particular transfer. The last data payload need not (and should not) be
padded out to the maximum data payload size.

The bulk transfer is considered complete when the endpoint has transferred exactly as much data as expected, the endpoint
transfers a packet with a data payload size less than the endpoint's maximum data payload size, or the endpoint transfers a
zero-length packet.

Transmission Errors

If a data payload is transferred that is larger than expected, the transfer should be aborted along with any pending bulk
transfers through the same pipe.

Bulk data transfers employ data toggle bits to both detect errors and provide the necessary synchronization to recover from an
error. If a halt condition is detected, any remaining bulk transfers should be retired. The halt condition is resolved by means of
a separate control pipe.

Interrupt Data Transfers

Interrupt data transfers guarantee a maximum service time for any data transfer. In the even of a transmission failure, data is
retransmitted at the next period. Thus, an interrupt data transfer is ideal for devices that do not send data often, but when they
do, they require timely transmission as well as data integrity; most human input devices have these requirements.

Interrupt data transfers are carried out by a stream pipe and thus do not need to adhere to any USB data structure.

Maximum Data Payload Size

An endpoint used for a interrupt data transfer specifies the maximum data payload size that it can accept or transmit to the
bus. The allowable maximum data payload sizes depend on the speed of the device:

= High-speed device endpoints may select a maximum data payload size of up to 1024 bytes.
= Full-speed device endpoints may select a maximum data payload size of up to 64 bytes.
= Low-speed device endpoints may select a maximum data payload size of up to 8 bytes.

Additionally, a high-speed, high-bandwidth endpoint may specify that it requires two or three transactions per microframe.
High-speed, high-bandwidth endpoints, frames, and microframes will be discussed later.

Notice that the maximum data payload size for interrupt data transfers allows for more granularity than control or bulk data
transfers. That is, an interrupt data transfer endpoint for a high-speed device may be any integer from 0 to 1024. The
maximum data payload size for an interrupt transfer endpoint remains constant during the lifetime of the device's
configuration.

Like control and bulk data transfers, an interrupt transfer endpoint must transmit data payloads of the maximum data payload
size for that endpoint with the exception of the last data payload in a particular transfer. The last data payload need not (and
should not) be padded out to the maximum data payload size.

The interrupt transfer is considered complete when the endpoint has transferred exactly as much data as expected, the endpoint
transfers a packet with a data payload size less than the endpoint's maximum data payload size, or the endpoint transfers a
zero-length packet.

Transmission Errors

If a data payload is transferred that is larger than expected, the transfer should be aborted and the pipe stalls any future
interrupt transfers until the error is acknowledged and corrected.

Interrupt data transfers may use one of two data toggle bit schemes to ensure successful data transmission. Devices that
require higher through-put may choose to toggle every transmission rather than perform a handshake with the host. This
method is more susceptible to errors than the alternative method of toggling bits upon successful transaction (after a
handshake).

http://wiki.osdev.org/Universal_Serial_Bus 9/37

25.02.2015 Universal Serial Bus - OSDev Wiki

If a halt condition is detected, any pending interrupt transfers should be retired. The halt condition is resolved via a separate
control pipe.

Isochronous Data Transfers

Isochronous data transfers are similar to interrupt transfers in that they guarantee a maximum service time for any transfer, but
isochronous data transfers do not ensure data integrity. When data is ready to be transmitted to or from an isochronous
endpoint, the data is always transferred at a constant rate.

The data being transmitted via an isochronous pipe need not have any specific structure, therefore isochronous pipes are
stream pipes.

Maximum Data Payload Size

An endpoint used for a isochronous data transfer specifies the maximum data payload size that it can accept or transmit to
the bus. The allowable maximum data payload sizes depend on the speed of the device:

= High-speed device endpoints may select a maximum data payload size of up to 1024 bytes.
= Full-speed device endpoints may select a maximum data payload size of up to 1023 bytes.
= Low-speed devices may not implement isochronous endpoints.

Like interrupt endpoints, isochronous endpoints may specify a maximum data payload size with byte granularity. Also like
interrupt endpoints, high-speed, high-bandwidth isochronous endpoints may specify if they require two or three transactions
per microframe.

Unlike any other transfer types, isochronous transfers may transmit any amount of data up to the maximum data payload size
during any transaction.

Transmission Errors

Isochronous transfers are meant for devices where data transmission rate is more important than data integrity. For that reason,
isochronous transfers do not allow handshakes and thus cannot stall. It is still important that the agent of an isochronous
transfer know if an error occurred, and possibly how much data was lost. The USB protocol provides several mechanisms for
detecting data transmission errors in an isochronous transfer, these mechanisms will be discussed later. Determining the
amount of data lost is implementation-dependent. It is up to the software on the host or firmware on the function to implement
any sort of data corruption detection/correction.

Advanced USB Concepts

The topics in this section build upon the topics previously discussed. The information in this section provides some useful
lower-level details about USB systems.

Distribution of Bus Access Time
Frames and Microframes

To ensure synchronization between the host and the functions, the USB divides bus time into fixed-length segments. For low-
or full-speed buses, the USB divides the bus time into 1 millisecond units, called frames. For a high-speed bus, the USB
divides the bus time into 125 microsecond units, called microframes.

Note that frames and microframes do not coexist on one bus; low- and full-speed buses used frames, but in developing a high-
speed bus, a shorter frame was necessary because the significantly higher signaling bit rate is more sensitive to smaller shifts
in synchronization between the host and the function.

Frames and microframes are mostly a physical-layer detail and should not be confused with any of the previous concepts.
Frames and microframes do not correspond to any packet or transaction; in fact, several transactions usually take place during
one (micro)frame. The host controller issues a start-of-frame (SOF) packet at the beginning of every (micro)frame. The
remainder of the (micro)frame is available for the host controller to carry out transactions. A transaction may not take place if
it cannot be completed in the same (micro)frame (because otherwise the next SOF packet would interrupt the transaction).

http://wiki.osdev.org/Universal_Serial_Bus 10/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Transaction 2
Transaction 3
Transaction 4
Transaction 5

Start-of-Frame (SOF)
Transaction 1

Unused (micro)frame time
Start-of-Frame (SOF)
Unused (micro)frame time
Start-of-Frame (SOF)
Transaction 6
Unused (micro)frame time

(micro)frame {micro)frame (micro)irame

Figure 10: Illustration of USB (micro)frames.

It is important to realize that the host controller may rearrange transactions to make better use of the available bandwidth. Of
course, two transactions through the same pipe must occur in the correct order, but the transactions of two separate transfers
may be reordered at the host controller's discretion. Consider a pending bulk transfer and two pending control transfers. The
host could potentially reorder the transfers on the bus as in Figure 11.

Pending Transfers
Bulk Transfer Control Transfer 1 Control Transfer 2

Start-of-Frame {SOF
Start-of-Frame (SOF
Start-of-Frame (SOF

(micro)frame {micro)frame (micro)frame

Figure 11: Illustrates how a host controller may potentially reorder a bulk transfer and two control transfers on the
USB.

Bus Time Rationing

There are separate rules for the allocation of frames on a full-/low-speed bus, and for the allocation of microframes on a high-
speed bus.

For full- or low- speed buses:
= [fa control transfer requires less than 10% of a frame, the remaining bus time can be used to support bulk transfers
= [f there are more control transfers than reserved time, yet additional frame time that is unused by interrupt or

isochronous transfers, the host controller may move additional control transfers onto the bus.

http://wiki.osdev.org/Universal_Serial_Bus 11/37

25.02.2015 Universal Serial Bus - OSDev Wiki

= No more than 90% of a frame may be allocated for periodic (isochronous and interrupt) transfers.
= The host must not issue more than 1 transaction in a single frame for a specific isochronous endpoint.

For a high-speed bus:

= [fa control transfer requires less than 20% of a microframe, the remaining bus time can be used to support bulk
transfers.

= [f'there are more control transfers than reserved time, yet additional microframe time that is unused by interrupt or
isochronous transfers, the host controller may move additional control transfers onto the bus.

= No more than 80% of a frame may be allocated for periodic (isochronous and interrupt) transfers.

= The host must not issue more than 1 transaction in a single microframe for a specific isochronous endpoint unless it is a
high-speed, high-bandwidth endpoint.

= Split transaction bus access time is allocated from the 80% of the microframe guaranteed to periodic transfers.

High-Speed, High-Bandwidth Endpoints

High-speed interrupt or isochronous endpoints that require high bandwidth may specify that they support up to three
transaction in a single (micro)frame. In this case, all but the last transaction in a particular (micro)frame must have a data
payload of the maximum data payload size for that endpoint.

The host controller never retries a transaction with an isochronous endpoint. If a transaction with a high-speed, high-
bandwidth interrupt endpoint fails, the host controller may retry the transaction during the same (micro)frame if the maximum
number of transactions per (micro)frame has not been reached. Otherwise, the transaction is retried at the next period.

Supporting Isochronous Transfers

Recall that isochronous transfers occur over stream pipes, which provide one-way data transfer. On one of the pipe, called the
source, data is produced, and on the other end, called the sink, data is delivered.

Devices that implement isochronous endpoints require that data be transmitted from source to sink at a certain rate, sometimes
in large payloads (e.g, streaming audio or video). This section discusses how the USB accomplishes these requirements.

Synchronization

Due to application-specific sampling rates, different hardware clock designs, scheduling policies in the operating system, or
even physical anomalies, the host and isochronous device could fall out of synchronization. Therefore, special consideration is
required to maintain synchronization. Isochronous endpoints specify one of three synchronization types.

Asynchronous Endpoints

Asynchronous endpoints are incapable of synchronizing to SOF packet frequency (1ms periods for full-speed endpoints, 125
microsecond periods for high-speed endpoints). These endpoints have either:a set of one or more fixed data sampling rates, or
a continuously programmable data rate. The device must report the programmability of an asynchronous endpoint in some
manner (defined by the class of the device rather than by the USB specifications); if the data rate is programmable, then it
must be set by the host during initialization of the isochronous endpoint.

Asynchronous source endpoints imply their data rate by the number of samples produced per (micro)frame. Asynchronous
sink endpoints must provide explicit feedback to the source endpoint. When the source endpoint is the host, it is the
responsibility of the device driver to process the explicit feedback properly. This feedback allows the host and device to make
slight adjustments to the data rate in order to compensate for any clock drift.

Synchronous Endpoints

Synchronous endpoints must synchronize their data transmissions to the SOF packet frequency (1ms periods for full-speed
endpoints, 125 microsecond periods for high-speed endpoints). These endpoints have either a set of one or more fixed data
sampling rates, or a continuously programmable data rate. The device must report the programmability of a synchronous
endpoint in some manner (defined by the class of the device rather than by the USB specifications); if the data rate is
programmable, then it must be set by the host during initialization of the isochronous endpoint.

Adaptive Endpoints

http://wiki.osdev.org/Universal_Serial_Bus 12/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Adaptive endpoints can source or sink data at any rate within their specified operating range. These endpoints may have an
operating range that centers around a specific data rate, it may have a finite set of data rate ranges, or it may select between
several programmable or auto-detecting data rates. The device must report the programmability of an adaptive endpoint in
some manner (defined by the class of the device rather than by the USB specifications); unlike the previous synchronization
types, adaptive endpoints may adjust it's instantaneous data rate during operation.

Adaptive sink endpoints provide explicit feedback to the source like asynchronous endpoints.
Handling Errors

Handshakes are not performed for isochronous transactions, therewith eliminating the bandwidth overhead of
acknowledgment packets. Unlike other transfer types, the applications of isochronous endpoints are responsible for any error
detection and handling. Although it may be more important to continue delivering streaming data rather than retransmit a
missed data packet, applications of isochronous endpoints often still need to know that an error did occur in the stream.

The USB protocol highlights the following possible method for the host or a device to detect an error in an isochronous
stream:

= High-speed, high-bandwidth isochronous transactions use data PID sequencing (data bit toggling), an isochronous sink
can determine that a data packet was missed when it receives an invalid data PID sequence.

= The host controller and device can both see SOF packets on the bus. If the SOF packet is issued for a (micro)frame that
is expected to carry the periodic data of an isochronous endpoint, but the data is not transmitted, then the hardware can
determine that a packet was missed.

= The protocol provides CRC protection to ensure that the data has not been corrupted.

= [f an endpoint sees the token packet but does not see the associated data packet within a bus transaction timeout period,
then the data packet failed to transfer.

Once an application is aware that there is an error in the stream, it is up to the application to determine the next course of
action.

USB Protocol

Packets

The atomic unit of data transfer is a packet. A packet is a bundle of organized data which typically contains three elements:

= Control information (e.g. source, destination, length of data)
= User/Application-specific data
= Error detection and correction bits

SYNC Field

The SYNC field is omitted from packet diagrams in the USB specifications, and usually in other material on USB meant for
programmers. Here I will briefly describe the semantics of the SYNC field simply because USB sources often reference the
SYNC field which may confuse the reader. However, for clarity, the system programmer (and probably most USB device
firmware developers as well) does not need to know about the SYNC field.

All USB packets start with a SYNC field which serves, unsurprisingly, as a synchronization mechanism between the receiver
and the sender. The SYNC field consists of 6 or 30 alternating bits for low- and full-speed or high-speed buses, respectively.
The last two bits of the SYNC field are equal (and low). High-speed hubs may drop up to 4 bits of the SYNC field, so a
receiving device may not see the entire field, but the final two bits are all the device needs to identify exactly where the SYNC
field ends, and useful data begins.

Packet Identifier Field

The Packet Identifier (PID) immediately follow the SYNC field. There are a total of 17 defined PIDs (included the PID of
0000b, which is reserved), therefore a PID requires 4 bits to encode. If errors on the bus alter the PID field (changing an OUT
PID to an IN PID, for example), the result could be anything from unexpected behavior to massive data loss. Due to the
importance of the PID integrity, the PID field is 8 bits wide. The last 4 bits simply compliment the first four bits, this provides
a means to determine if an error on the bus has altered the PID field. The PID Field is illustrated below.

http://wiki.osdev.org/Universal_Serial_Bus 13/37

25.02.2015

H PID() H PID| H PID,

Universal Serial Bus - OSDev Wiki
PID; | PIDj | PIDT H PID; ” PID3 H

Packet Identifier Field Format

PID codes are categorized into 4 groups which share the same two least-significant bits. USB 2.0 defines the PIDs in the

following table.
PID Type || PID Name || PID [3:0] Description
ouT 0001b || The packet describes a host-to-function transaction.
IN 1001b || The packet describes a function-to-host transaction.
Token SOF 0101b || The packet marks the start of frame and specifies the frame number.
SETUP 1101b gi;:get describes a SETUP transaction from the host to the function via a control
DATAO 0011b || This packet is an even data packet.
DATALI 1011b || This packet is an odd data packet
Data DATA2 0111b || This packet is only used in high-speed, high-bandwidth isochronous transfers.
MDATA 1111b ilglsh;r)gglézts itsr ;?g;:.ed in split transactions, or high-speed, high-bandwidth
ACK 0010b || This packet acknowledges the successful receipt of a data packet.
NAK 1010b || This packet indicates that data is not ready to be transmitted yet.
Handshake STALL 1110b This packet indicates that the endpoint has halted, or a control pipe does not support
a certain request.
NYET 0110b || The receiver has not yet responded, or the host should begin sending PING packets.
PRE 1100b || This packet is a host-issued preamble for a split-transaction.
ERR 1100b Tl_lis pacl_cet. isa handshake response that a split transaction error occurred. Note that
this PID is identical to the PID for a PRE packet.
Special SPLIT 1000b || This packet supports split transactions between the host and a high-speed hub.
PING 0100b || This packet is used for flow-control in high-speed control and bulk transfers.
Reserved 0000b || This is a reserved PID and must not be used.
PID Types
Address Fields

Address fields select a specific endpoint on a specific function. Naturally, two such fields are defined: an address field and an
endpoint field. All devices must fully decode these fields; a mismatch of either field (including an endpoint field which
specifies an endpoint that have not been initialized) must be ignored.

Address Field

The address field is specified for the following PIDs:

= IN

ouT
PING

SETUP

SPLIT

The address field is 7 bits wide and illustrated below. Each possible value may only indicate a single function. Address zero is

reserved as the default address and cannot be assigned to any function. All functions must respond to the default address

upon reset and power-up until the host assigns the function a specific address. Therefore, one host controller can support up to

http://wiki.osdev.org/Universal_Serial_Bus

14/37

25.02.2015 Universal Serial Bus - OSDev Wiki

127 devices at one time.

Addrg Addr Addrp Addr3 Addrg Addrs Addrg

Address Field

Endpoint Field

The endpoint field is specified for the following PIDs:

= IN

= SETUP
= OUT
= PING

The endpoint field is 4 bits wide and illustrated below. All functions must support at least endpoint number O (the default
control pipe). Low-speed functions may only implement 2 additional pipes, while full- and high-speed devices are only limited
by the width of the endpoint field. In other words, the width of the endpoint field is the reason that full- and high-speed
devices are limited to implementing up to 15 additional IN endpoints, and 15 additional OUT endpoints, as noted above under
Device Endpoints and Endpoint Numbers.

Endp Endp Endp) Endpj3

Endpoint Field
Data Field

The data field may range from zero to 1,024 bytes and must be an integral number of bytes. Data bytes are sent least-
significant-bit first.

Cyclic Redundancy Checks

Cyclic Redundancy Checks (CRC) protect all non-PID fields and provide 100% coverage for all single- and double-bit errors.
CRCs are provided for each token field as well as the data field. This provides a mechanism for the host or device to recognize
and either correct or ignore corrupted fields or, in most cases, an entire corrupted packet.

Handshakes

Transaction types which support flow control return handshakes to indicate:

Successful reception of data
Command acceptance or rejection
Flow control

Halt conditions

Handshakes are always returned in the handshake phase of a transaction, but may also be returned in the data phase (in place
of an expected data packet). To best understand a certain handshake response, it is useful to understand what each handshake
packet type means, as well as the conditions under which each handshake response may be issued. This section is divided
thusly.

Handshake Packets

All of the handshake packet types were listed previously and briefly in Packet Identifier Field. This section discusses those
packet types in greater detail.

ACK

An ACK handshake is issued to communicate that a data packet was ACK Handshake Packet
successfully received without any bit stuffing or CRC errors over the data field, |May be issued by... For these transactions
and the PID field was not corrupted. Host IN

http://wiki.osdev.org/Universal_Serial_Bus 15/37

25.02.2015

ACK packets may be issued when the receiver's sequence bit matches the
sequence bit of the received data packet (and the data can be accepted), but the
an ACK packet may also be issued when the receiver's sequence bit does not
match the sequence bit of the received data packet (and the data cannot be

Universal Serial Bus - OSDev Wiki

OUT
SETUP
PING

Function

accepted). This may seem counter intuitive, but the reasoning will become clear in the sections discussing data toggling.

NAK

The NAK handshake packet is generally used for flow control to indicate that a
function is temporarily unable to transmit or receive data. The host never issues
a NAK handshake packet to a device.

A function returns a NAK handshake packet to the host after an OUT transaction|

when the function is unable to receive data (usually because the function's

NAK Handshake Packet
May be issued by... For these transactions
IN
ouT
PING

Function

internal buffer is currently full). This response is not an error, but instead indicates that the host should retry transmission later,

allowing the function time to process the data currently in its buffer.

A function returns a NAK handshake packet to the host during the data phase of an IN transaction to indicate that the function

does not have any data to transfer.

STALL

A function uses the STALL handshake packet to indicate that it is unable to
transmit or receive data. Besides the default control pipe, all of a function's
endpoints are in an undefined state after the device issues a STALL handshake
packet. The host must never issue a STALL handshake packet.

Typically, the STALL handshake indicates a functional stall. A functional stall

STALL Handshake Packet
May be issued by... For these transactions
IN
OouT
PING

Function

occurs when the halt feature (which will be covered under "USB Framework") of an endpoint is set. In this circumstance, host
intervention is required via the default control pipe to clear the halt feature of the halted endpoint.

Less often, the function returns a STALL handshake during a SETUP or DATA stage of a control transfer. This is called a

protocol stall and is resolved when the host issues the next SETUP transaction.

NYET

The NYET packet may be issued by a function as part of the PING protocol.

Hubs may issue a NYET handshake packet in response to a split transaction that
has not yet completed on the low-/full-speed bus.

ERR

Hubs may issue the special ERR handshake packet to report an error on a low-
/full-speed bus as part of the split transaction protocol.

Function/Host Response Circumstances

NYET Handshake Packet
May be issued by... For these transactions
Hub | SPLIT
Function | OuT
ERR Handshake Packet
May be issued by... For these transactions
Hub SPLIT

This section describes the functional circumstances that cause the host or a function to issue an expected response, no
response, or certain handshake packet responses. The tables in this section are taken and slightly modified for clarity from the

USB 2.0 specifications, section 8.4.6. Dashes denote a "don't care."

Function Response to IN Transactions

’Token received corrupted H Function Tx endpoint halt feature “ Function can transmit data “ Action taken by functi0n|
| Yes H - ” - “ Return no response |
| No H Set ” - H Issue STALL handshake |
| No H Not Set ” No H Issue NAK handshake |
‘ No H Not Set ” Yes H Issue data packet |

http://wiki.osdev.org/Universal_Serial_Bus

25.02.2015 Universal Serial Bus - OSDev Wiki

Host Response to IN Transactions

IData packet corrupted ” Host can accept data HAction taken by hostH Handshake returned by host‘
I Yes ” - H Discard Data H Return no response ‘
| No ” No H Discard Data H Return no response ‘
‘ No ” Yes H Accept Data H Issue ACK handshake ‘

Function Response to OUT Transactions

Data packet Receiver halt Sequence bits Function can accept Action taken by
corrupted feature match data function
‘ Yes H - H - H - H Return no response ‘
‘ No H Set H - H - H Issue STALL handshake ‘
‘ No H Not Set H No H - H Issue ACK handshake ‘
| No H Not Set H Yes H Yes H Issue ACK handshake ‘
| No H Not Set H Yes H No H Issue NAK handshake ‘

Function Response to SETUP Transactions

A function must always accept data in a SETUP transaction, and must never issue a STALL or NAK handshake in response.
All non-control endpoints must simply ignore any SETUP transaction addressed to that endpoint. This allows SETUP
transactions to function as a (re)synchronization mechanism between the host and a function's control endpoint.

PING Transaction Protocol

Consider a USB mass storage device. During a transfer from the host to the function, the function's buffer fills up with data
that is pending being committed to the physical media. When the function's buffer is full, the function cannot accept new data
until some of the buffer is committed, so if the host continues sending OUT transactions, the function must NAK them.

The problem with this OUT/NAK model is that a function must wait for the handshake stage of the OUT transaction before
responding with a NAK. Since the handshake stage occurs after the data stage, this can waste a significant amount of
bandwidth. Low- and full-speed buses suffer from this problem, but the USB 2.0 specification introduced the PING
transaction protocol for high-speed buses.

The PING transaction protocol is very straightforward. Rather than an OUT transaction, the host issues a PING transaction to
the function when the host wishes to send data. The function responds with either NAK to indicate that it is not ready to
receive data (specifically, the function's buffer cannot accommodate the endpoint's maximum data payload amount of data), or
ACK to indicate that the host may start sending data.

The USB 2.0 framework allows endpoints to specify an interval, in terms of microframes, which is the amount of microframes
that the host should wait before issuing another PING packet to the endpoint. However, the host is not required to wait this
interval before issuing the next PING packet.

During a high-speed control or bulk transfer from the host to function, when an OUT transactions causes a function's free
buffer space to drop below the endpoint's maximum data payload, the function responds with a NYET handshake packet. This
indicates that the host should start issuing PING packets rather than additional OUT transactions.

Data Toggle Synchronization

During a transfer, the host and function must remain synchronized. The ability to maintain synchronization means that the host
or function can detect when synchronization has been lost and, in most cases, resynchronize.

http://wiki.osdev.org/Universal_Serial_Bus 17/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Every endpoint maintains, internally (in the function's hardware), a data toggle bit, also called a data sequence bit. The host
also maintains a data toggle bit for every endpoint with which it communicates. The state of the data toggle bit on the sender is
indicated by which DATA PID the sender uses.

The receiver toggles its data sequence bit when it is able to accept data and it receives an error-free data packet with the
expected DATA PID. The sender toggles its data sequence bit only upon receiving a valid ACK handshake. This data toggling
scheme requires that the sender and receiver synchronize their data toggle bits at the start of a transaction.

Data toggle synchronization works differently depending on the type of transfer used:

= Control transfers initialize the endpoint's data toggle bits to 0 with a SETUP packet.

= Interrupt and Bulk endpoints initialize their data toggle bits to 0 upon any configuration event.

= [sochronous transfers do not perform a handshake and thus do not support data toggle synchronization.
= High-speed, high-bandwidth isochronous transfers do support data sequencing within a microframe.

The remainder of this section illustrates how the sending and receiving devices each manage their data toggle bits during
different transmission scenarios. Black arrows signify the intended data transmission on the USB. Gray arrows signify that the
intended data transmission completed without error. Red, discontinuous arrows signify that the intended data was corrupted
during transmission or entirely failed to transmit.

Successful transmissions

Figure 12 illustrates a successful data transfer. Both devices have data toggle bits set to 0 at
the beginning of transfer i. Accordingly, the sending device issues a DATAO PID followed
by the data packet. The receiving device successful reads the DATAO PID as well as the data I R
packet. Since the receiver's data toggle bit matches the DATAO PID and there were no errors E1—== | Bl
in transmitting the remaining data, the receiver toggles its data toggle bit to 1 and issues an | AR
ACK handshake response. The sender receives the ACK handshake without error, and thus
toggles its data toggle bit to 1. e e e

S | B

Figure 12: Illustration of how
the sender and receiver
manage their data toggle bits
during a successful data
transfer

Supposing that the next transfer occurs without error as well, the only difference is that the
DATAT1 PID is used rather than DATAO, and the sending and receiving devices toggle their
data toggle bits from 1 to 0 in the same stages that the same bit toggled to a 1 in the previous
transfer.

Failed or corrupted data transmissions

- Figure 13 illustrates a failed or corrupted data transmission. Both devices have data toggle
bits set to 0 at the beginning of transfer i. Accordingly, the sending device issues a DATAOQ
= - PID followed by the data packet. The receiving device either does not see the data packet, or
reads a corrupted data packet. The receiver maintains its data toggle bit and issues a NAK
handshake. The sender successfully sees the NAK handshake and thus does not toggle its

Figure 13: Illustration of how
the sender and receiver

data toggle bit.

At the beginning of the next transfer, both the sending and receiving device have data toggle
bits still set to 0. Supposing this transfer completes successfully, it is carried as as described

manage their data toggle bits
during a failed or corrupt data
transfer

above, under successful transmissions.
Failed or corrupted ACK handshake

Figure 14 illustrates a failed or corrupted ACK handshake. Both devices have data toggle bits set to 0 at the beginning of
transfer i. Accordingly, the sending device issues a DATAO PID followed by the data packet. The receiving device
successfully reads the DATAO PID as well as the data packet. Since the receiver's data toggle bit matches the DATAO PID and
there were no errors in transmitting the remaining data, the receiver toggles its data toggle bit to 1 and issues an ACK
handshake response. The sender does not receive, or receives a corrupted ACK response, and thus discards the packet without
modifying it's data toggle bit.

At this point, the sending device's data toggle bit is still 0, and the receiving device's data toggle bit has been set to 1. The
sender, having not seen a valid ACK response for transfer i, reattempts transfer i. With a data toggle bit of 0, the sender issues
a DATAO PID followed by the data packet. The receiving device successfully reads the DATAO PID as well as the data

http://wiki.osdev.org/Universal_Serial_Bus 18/37

25.02.2015 Universal Serial Bus - OSDev Wiki
packet. Since the receiver's data toggle bit does not match the DATAOQ PID, the receiver

maintains it's data toggle bit value of 1 and issues an ACK handshake response. The sender B2 | B2 | B8
receives the ACK response without error, and thus toggles its data toggle bit to 1. E 8 3 als 8
Supposing that the next transfer occurs without error, it begins with both device's data toggle -8 B _|,j D_E

B85 8B 3

bits set to 1 and ends with them toggling to 0 at the appropriate stage of the transfer.

Figure 14: Illustration of how

USB Transfers Revisited the sender and receiver
manage their data toggle bits
A lot of information has been introduced since Basics of USB Transfers, and it is very easy during a failed or corrupt

to get lost in the details. With even a decent understanding of the four types of USB transfers, ACK response

it is often difficult to extrapolate from the intricacies of the USB protocol to an understanding

of just how everything fits together. For these reasons, this section intends to clarify some

potentially confusing concepts both explicitly and implicitly by revisiting the four transfer types in context of all the
information covered since first discussing them.

An apprehensive reader may have noticed that some terms like SETUP and DATA are used both in referring to packet
identifiers, and in referring to types of transactions. This wiki entry may very well be the first and only source of USB
information that takes a moment to specifically differentiate between the two.

Under Basics of USB Transfers, USB transactions were mentioned only briefly as has been reproduced below:

host USB transactions consist of three packets:

* A token packet indicates the type and direction of the transaction, the device address, and an

' endpoint number.

* Depending on the direction of the transaction, either the host or the function sends a data packet
E (which may simply indicate that there is no data to send).

#* The receiving device responds with a handshake packet to indicate if the transfer was successful.

Then, under Packets, a packet was described as "the atomic unit of data transfer."

If a packet is an atom, then a transaction would be a molecule. That is, a transaction is made up of several packets in a specific
order, and the packets which make up a transaction cannot be reordered or separated and still yield the same transaction.
Transactions are normally named after their token packet (or their "special” packet, in the case of PING or SPLIT because
these special packets play the same role as token packets), with the exception that IN or OUT transactions are often referred
to, collectively, as DATA transactions. In examples, transactions that contain a data stage often indicate the type of DATA
PID used by either appending 0, 1, 2, or M to the name, or adding it in parenthesis (e.g, SETUP(0) or SETUPO, OUT1 or
OUT(1)).

SETUP Transaction

DATAOQ

Figure 15: Illustrates a SETUP transaction, which consists of a SETUP packet,
a DATAO packet, and a handshake packet (in this case, an ACK handshake).

An example of a single SETUP transaction is depicted in figure 15. This transaction contains the typical three packets. The
token packet has a SETUP PID, the data packet has a DATAO PID (recall that a SETUP packet initializes both the function's
and the host's data toggle bits to 0), and the handshake response has an ACK PID.

Transfers are made up of transactions. Transactions may not be reordered within a transfer but, as discussed in Frames and
Microframes, the transactions of a particular transfer may or may not be sent over the bus in a continuous fashion. The rest of
this section looks at the transactions involved in the four transfer types.

Control Transfers

Control transfers are the only transfers that use the SETUP transaction. Control transfers take place in up to three stages:

= The SETUP stage consists simply of a SETUP transaction
= The DATA stage is optional. If used, it may contain either one or more IN transactions, or one or more OUT
transactions. The first of these IN or OUT transactions uses the DATA1 PID. The second, if present, uses the DATAO

http://wiki.osdev.org/Universal_Serial_Bus 19/37

25.02.2015 Universal Serial Bus - OSDev Wiki

PID, the third DATA1, and so on.

= The STATUS stage consists of a single IN or a single OUT transaction, which must use the DATAT1 PID. If the DATA
stage is present, then the STATUS stage uses the opposite type of transaction as the DATA stage (i.e, if the DATA stage
consists of one or more OUT transactions, the STATUS stage consists of a single IN transaction, and vice versa). When
the DATA stage is omitted, the STATUS stage uses a single IN transaction.

Figure 16 is taken from Figure 8-37 of the USB 2.0 specification and illustrates the transaction order, data sequence bit value,
and DATA PID type for control read and write sequences.

Setup Data Status
Stage Stage Stage
A ™ A
! i d ™~ | 1
ﬁ'ﬂ!‘;lrﬂl SETUP (0) ouT (1) OUT (0) OuUT (0/1) IN (1)
rite
DATAD DATAA DATAD DATADA DATAA1
gﬂggﬂ' SETUP (0) IN (1) IN (0) IN (0/1) OUT (1)
e
DATAD DATA1 DATAD DATADM DATAA1
Setup Status
Stage Stage
A A
! 1 I !
No-data SETUP (0 IN (1
Control © M
DATAD DATA1

Figure 16: Control read and write sequences

Bulk and Interrupt Transfers

In the context of the USB protocol, the only difference between bulk and interrupt transfers is that bulk transfers, when
operating at high-speed, support the PING Transaction Protocol. Note that in a general context, these two transfer types are
also different in that they are scheduled differently by the host (refer to Bus Time Rationing).

All bulk and interrupt endpoints transfer in one direction. The data toggle bits for these endpoints are initialized to zero after
any configuration event. Figure 17 is taken from Figure 8-35 of the USB 2.0 specification and illustrates the bulk and interrupt
transactions for both IN and OUT endpoints. Note that, even though the figure only mentions bulk reads and bulk writes, the
USB 2.0 specification references the same figure from section 8.5.4, on Interrupt Transactions.

Bulk OUT (0) OUT (1) OuUT (01)
Write
DATAD DATAA DAT A
Bulk
Read IN (0) IN (1) IN (011)
DATAD DATAA DATADN

Figure 17: Bulk and interrupt transactions

Isochronous Transfers

Isochronous transfers are the only type of transfers whose transactions do not have a handshake phase. Isochronous transfers
should only use DATAO PIDs, however the host controller must support DATA1 PIDs as well, even though isochronous
transfers do not use a data synchronization bit mechanism.

High-Speed, High-Bandwidth Isochronous Transfers
High-speed, high-bandwidth isochronous transfers are a special case of isochronous transfers, where up to 3 transactions may
occur in one microframe. As a specific type of isochronous transfer, high-speed, high-bandwidth isochronous transfers omit

the handshake phase of their transactions. Since up to 3 transactions may occur in one microframe, high-speed, high-
bandwidth isochronous transfers, it is necessary to use a data sequencing mechanism like the other transfer types.

http://wiki.osdev.org/Universal_Serial_Bus 20/37

25.02.2015 Universal Serial Bus - OSDev Wiki

USB 2.0 does implement a data sequencing mechanism for high-speed, high-bandwidth isochronous transfers, but it works a
little differently than as in other transfer types. In fact, data sequencing works differently depending on whether an endpoint is
an IN, or an OUT high-speed, high-bandwidth isochronous endpoint.

For IN high-speed, high-bandwidth isochronous endpoints, the data sequencing is depicted in figure 18, which has been taken
from figure 5-11 of the USB 2.0 specifications. The last transaction in a microframe always uses the DATAO PID. The
second-to-last transaction in a microframe uses the DATA1 PID, and the third-to-last transaction in a microframe always uses
the DATA2 PID.

1 transaction, <1024 bytes: -
2 transactions, 513-1024 bytes ea.: ~ DATA1 | DATA0

3 transactions, 683-1024 bytes ea.: = DATA2 DATA1 | DATAO

Figure 18: Data Phase Sequence for Isochronous IN High Bandwidth Endpoints

For OUT high-speed, high-bandwidth isochronous endpoints, the data sequencing is depicted in figure 19, which has been
taken from figure 5-12 of the USB 2.0 specifications. All transactions but the last transaction use the MDATA PID. The last
transaction uses either the DATAO, DATA1, or DATA2 PID, depending on how many transactions were intended to take
place during the microframe. If one transaction was meant to take place, it is also the last transaction and uses a DATAO PID.
If two transactions were meant to take place, the last transaction uses a DATA1 PID. If three transactions were meant to take
place, the last transaction uses a DATA2 PID.

1 transaction, <1024 bytes: -
2 transactions, 513-1024 bytes ea.: [SMDATAN DATA1

3 transactions, 683-1024 bytes ea.: [SMDATAY NMDATAY ~ DATA2

Figure 19: Data Phase Sequence for Isochronous OUT High Bandwidth Endpoints

USB Device Framework

The USB device framework is the thing that makes USB support so appealing. The transfer types and USB protocol are well-
designed, of course, but the USB device framework defines standard device states that all devices must support, as well as
standard requests and responses that allow the host to retrieve more than enough information about a device to determine the
correct device driver and report information about the device even if the correct device driver isn't available (e.g, the
manufacturer's name, the product's name, etc).

Functions, Configurations, Interfaces, and Endpoints

All USB devices, or functions, have at least one configuration, and every configuration has at least one interface. An interface
may define zero or more endpoints. This relationship is illustrated in figure 20.

Although configurations descriptors are addressed sequentially starting with configuration descriptor zero, each configuration
specifies a unique (within the scope of the function), none-zero configuration value. The configuration value is what the host
needs to know in order to apply a certain configuration to a device. When asking for the current configuration of a device, a
returned value of zero indicates that the device is not configured and is thus in the address state.

An interface defines the functional use of a set of endpoints and may imply that certain class-specific requests can be
executed via the default control pipe. Thus, an interface need not necessarily define any additional endpoints. No interface
may define the functional use of endpoint zero.

http://wiki.osdev.org/Universal_Serial_Bus 21/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Each interface describes a unique set of endpoints within the scope of the configuration. However, an interface may provide
one or more alternate settings, which may have different definitions for the same set of endpoints. When the host selects an
alternate setting for an interface, the alternate setting's definitions are used instead of the default settings of the same interface.

USB Device States

A USB device may define states that are internal to the device, however the USB device framework defines a set of states that
are visible to both the host and the device. Those visible states are the following:

= Attached - Immediately after the USB device is attached to the USB system, it is in this state. The USB specifications
do not define the state of a USB device that is detached from a USB system.
= Powered - A device is in this state after it has both been attached to the bus, and the Vgg line is applied to the device

(the host controller drives the VR at +5V, however this is

only particularly important for hardware developers). In this
state, the device must not respond to any bus transactions. Function
The USB specification recognizes three potential scenarios
with respect to how a device draws power:

» Self-Powered Devices draw power from an external
power source (e.g, a USB printer plugs into the wall as
well as a USB port). Although the device may be : :
considered technically "powered" even before Endpoint 1
attachment to the USB, it is still only considered Endpoint 2
powered after the VBg line is applied to the device.

= Bus-Powered Devices draw power solely from the
USB up to 100mA.

» Self- or Bus-Powered Devices may draw power from Endnaint 4 point &
either the bus or an external power source, depending Endpoint 5 g::E ;

on the configuration. These devices may change power
source at any time. If a device is currently self-powered
and requires more than 100mA of power, but switches
to being bus-powered, then the device must return to
the Address state.
= Default - A device in the powered state enters the default
state after receiving a bus reset. In this state, the device is
addressable at the default, reserved address of 0. At this
point, the device is operating at the correct speed. The host is
expected to allow 10 milliseconds before expecting the
device to respond to data transfers after reset.
= Address - A device enters this state after the host assigns it an address via the default control pipe, which is always
accessible whether the device's address has been set or not.
= Configured - A device is in this state after the host examines its possible configurations and selects one. All endpoint's
data toggle bits are initialized to zero when a device enters this state.
= Suspended - When no traffic is observed on the bus for a period of 1 millisecond, a USB device enters this state,
characterized by its low power consumption. The device's address and configuration settings are maintained while
suspended. A device exits the suspended state as soon as it begins seeing bus activity again. The host is expected to
allow 10 milliseconds before expecting the device to respond to data transfers after resume.

Figure 20: Illustration of the relationship between
functions, configurations, interfaces, and endpoints.

Remote Wakeup Capability

One of the reasons a USB device may stop seeing USB traffic and thus enter a suspended state is because the host may have
entered a suspended state as well. Some devices, typically keyboards and mice, support the ability to issue a remote wakeup
signal to the host. In case the host software does not support remote wakeup, this capability must be disabled when a USB
device is reset. If the host does support remote wakeup, then it may selectively enable the remote wakeup capability for
specific devices (typically as chosen by the user). Then, these devices may issue a remote wakeup signal while in a suspended
state to request that the host exits its own suspended state.

USB Device Enumeration

The following describes the process of bus enumeration, which occurs after a device is connected to a powered port:
1. The hub to which the device has been attached notifies the host via its status change pipe. The newly attached device is

in the powered state at this point, and the port to which it has been attached is disabled.
2. The host queries more information from the hub to determine that a device has been attached, and to which port.

http://wiki.osdev.org/Universal_Serial_Bus 22/37

25.02.2015 Universal Serial Bus - OSDev Wiki

3.

hd

The host must wait at least 100 millisecond to allow a device to complete its insertion process, and for power to stabilize
at the device. After the delay, the host enables the port and issues a reset signal to the device for at least 50 milliseconds.
The hub performs any required reset processing. After the reset signal has been released, the port is enabled and the
device enters the default state.

The host assigns the device a unique address, thereby transitioning the device into the address state.

The host requests the device descriptor from the device via the default control pipe in order to determine the actual
maximum data payload size of the default control pipe for the device. This step may occur before or after the host
assigns the device an address.

The host reads all the possible device configuration information.

The host selects a certain configuration from the list of configurations supported by the device and sets the device to use
that configuration. Optionally, the host may also select alternate interface settings within a configuration. All endpoints
are initialized as described by the selected configuration, and the device is ready to use.

USB Device Requests

Standard, class-specific, and vendor-specific requests are made to the USB device over the default control pipe. The SETUP
transaction always has a data payload size of 8 bytes, as noted in the Maximum Data Payload Size section of Control
Transfers. The format of the setup data is as follows:

Offset Field Size || Type Description

0

bmRequestType || 1 || Bitmap
D7y Dg Dj Dy D3 Dy Dy Dg

D~y Data transfer direction * The value of this bit is ignored when
wLength is zero

= Ob = Host-to-device
= 1b = Device-to-host

D¢..5 Type of request

= (00b = Standard
= 0lb=Class
= 10b = Vendor

11b = Reserved

Dy4..0 Recipient

= 00000b = Device
= 00001b = Interface
= 00010b = Endpoint
= 00011b = Other
= 00100bto 11111b = Reserved
bRequest 1 Value || Specific request
2 wValue 2 || Value || Word-sized field the may (or may not) serve as a parameter to the request,
depending on the specific request.
4 windex 2 Index || Word-sized field that may (or may not) serve as a parameter to the request,

or depending on the specific request. Typically this field holds an index or an
offset || offset value.

When bmRequestType specifies an endpoint as the recipient, the format of this
field is as follows:

D7 D¢ D5 Dy D3 Dj Dq Dy

Direction” Reserved (reset to zero) || Endpoint Number |

Dis D1g D13 D12 D11 D19 Dg Dg

http://wiki.osdev.org/Universal_Serial_Bus 23/37

25.02.2015 Universal Serial Bus - OSDev Wiki
| I I I I|

| Reserved (reset to zero)

control pipe.

field is as follows:

The direction bit (bit D7) is set to zero to indicate the OUT endpoint with the

specified endpoint number, or it is set to one to indicate the IN endpoint with
the specified endpoint number. The host should always set the direction bit to
zero (but the device should accept either value) when the endpoint is part of a

When bmRequestType specifies an interface as the recipient, the format of this

D~y D¢ D5 Dy

D3 Dy D1 Do

Interface Number

Dis D14 D13 D12

D11 D19 Dg Dg

Reserved (reset to zero)

undefined.

6 wLength 2 Count || Number of bytes to transfer if there is a DATA stage.

= If this field is non-zero, and bmRequestType indicates a transfer from
device-to-host, then the device must never return more than wilength
bytes of data. However, a device may return less.

= [f this field is non-zero, and the bmRequestType indicates a transfer from
host-to-device, then the host must send exactly wLength bytes of data. If
the host sends more than wLength bytes, the behavior of the device is

When a device receives a request that is undefined, is inappropriate given the current setting or state of the device, or uses

values that are inappropriate for the particular request, then a Request Error exists. The device handles a Request Error by
returning a STALL PID to the next DATA or STATUS stage, preferably at the next DATA stage transaction.

Standard Requests

The standard requests are defined for all USB devices, and all USB devices must
respond to these standard requests even if the device hasn't been assigned an address,
or the device hasn't been configured. To issue a certain request, the software creates the
SETUP stage's DATA packet using the appropriate request code, a valid
bmRequestType, the appropriate parameter values (or zero, if not applicable) for
wValue and windex, and the amount of data bytes to be transfered for wLength. To the
right are the standard USB device request codes, and the remainder of this section
discusses each request.

SET_ADDRESS

The SET_ADDRESS request has the following SETUP DATA packet format:

bmRequestType bRequest wValue wlndex || wLength
00000000b SET—A];)DRESS Device Address || Zero Zero

SET_ADDRESS SETUP DATA Packet Format

This request does not have a DATA stage, only a SETUP and STATUS stage.

| bRequest HValue‘
|GET_STATUS | o |
ICLEAR_FEATURE || 1 |
Reserved 2

|SET_FEATURE | 3 |
|Reserved H 4 ‘
|SET_ADDRESS | 5 |
|GET_DESCRIPTOR || 6 |
ISET_DESCRIPTOR | 7 |
GET_CONFIGURATION	8
SET_CONFIGURATION	9
GET_INTERFACE	10
SET_INTERFACE	1
SYNC_FRAME	12]

Standard USB Request Codes

wValue specifies the address to be assigned to the device. The behavior of a device is undefined when wValue specifies an

address greater than 127.

http://wiki.osdev.org/Universal_Serial_Bus

24/37

25.02.2015 Universal Serial Bus - OSDev Wiki
The exact behavior of the device after the SET _ADDRESS requests depends on the current state of the device:

= When a device is in the default state, a non-zero wlValue causes the device to transition into the address state. When a
device is in the default state, a wValue of zero has no effect.

= When a device is in the address state, a non-zero wValue keeps a device in the Address state, but the device responds to
the newly set address. When a device is in the address state, a wValue of zero transitions the device into the default
state.

= When a device is in the configurd state, device behavior is not defined for the SET ADDRESS request.

This is the only request that is complete after the STATUS stage completes successfully. After the reset/resume recovery
interval (10 milliseconds), a device is expected to be able to complete the STATUS stage of this request within 50
milliseconds. After the STATUS stage is complete, the device is allowed a 2 millisecond recovery interval before it must be
able to accept farther SETUP packets for additional requests.

GET_DESCRIPTOR

The GET_DESCRIPTOR request has the following SETUP DATA packet l Descriptor Type HValue‘
format:
IDEVICE [1]
|CONFIGURATION | 2 |
ISTRING 3 |
INTERFACE 4
IENDPOINT | 5 |
IDEVICE_QUALIFIER 6 |
|OTHER_SPEED_CONFIGURATION| 7 |
INTERFACE_POWER | 8 |
Standard USB Descriptor Types
bmRequestType bRequest wValue windex wLength
10000000b GET—DE%CRIPTOR Descriptor Type || Descriptor Index Lafge;:goerID Disec;rgltlor

GET_DESCRIPTOR SETUP DATA Packet Format

The high-order byte of wValue specifies the descriptor type (see table of usb standard descriptor types, to the right). The low-
order byte of wValue is only used for selecting a specific STRING or CONFIGURATION descriptor, and should be reset to
zero otherwise.

The windex field is only used for STRING descriptors to specify the desired language and should be reset to zero for other
descriptor types.

Different descriptor types have different lengths which will be discussed soon. If wLength is less than the size of the descriptor
being returned, then the device only returns the first wLength bytes of the descriptor data. If wLength is larger than the size of
the descriptor being returned, than the full descriptor is returned, followed by a short packet (a packet shorter than the
maximum data payload size, including a length of 0 bytes).

All USB devices must support requests for DEVICE, CONFIGURATION, and STRING descriptors. All high-speed devices
must support basic operations at full-speed; such devices also support DEVICE_QUALIFIER and

OTHER_SPEED CONFIGURATION descriptors which return the same data that the device would return for DEVICE and
CONFIGURATION descriptor requests, respectively, if the device were operating at the speed at which it is not currently
operating.

A request for a CONFIGURATION descriptor also returns all the INTERFACE descriptors for the specified configuration
descriptor index (i.e, the low-order byte of wValue), as well as all of the ENDPOINT descriptors associated with all of the
returned INTERFACE descriptors, all in a single request.

GET DESCRIPTOR is a valid request for a device in the default, address, or configured state.

SET_DESCRIPTOR

The SET_DESCRIPTOR request is optional; when it is supported, it may be used to update descriptors or add new ones.

http://wiki.osdev.org/Universal_Serial_Bus 25/37

25.02.2015 Universal Serial Bus - OSDev Wiki
The SET_DESCRIPTOR request has the following SETUP DATA packet format:

bmRequestType bRequest wValue windex wLength
SET DESCRIPTOR . . Zero or Descriptor
00000000b 7 Descriptor Type || Descriptor Index Language ID | Length

SET_DESCRIPTOR SETUP DATA Packet Format

The high-order byte of wValue specifies the descriptor type. The low-order byte of wValue is only used for selecting a specific
STRING or CONFIGURATION descriptor, and should be reset to zero otherwise.

The windex field is only used for STRING descriptors to specify the desired language and should be reset to zero for other
descriptor types.

The wLength field specifies how many bytes will be transfered from the host to the device.
This request only supports DEVICE, CONFIGURATIOn, and STRING descriptor types.
If this request is not supported, the device responds with a Reuqest Error.

If this request is supported, it is only valid when the device is in the address or configured state; the behavior of the device is
undefined if this request is made while the device is in the default state.

GET_CONFIGURATION

The GET_CONFIGURATION request has the following SETUP DATA packet format:

bmRequestType bRequest wValue || windex || wLength

GET CONFIGURATION
8

GET_CONFIGURATION SETUP DATA Packet Format

10000000b Zero Zero One

The device sends a one-byte DATA packet during the DATA phase of the control transfer. This byte is the value of the current
configuration of the device. A value of zero indicates that the device has not yet been configured (it is in the address state).
Behavior of a device is undefined if this request is issued while the device is in the default state.

SET_CONFIGURATION

The SET_CONFIGURATION request has the following SETUP DATA packet format:

bmRequestType bRequest wValue wlndex || wLength
00000000b SET—CONFIgGURATION Reserved || Configuration Value | Zero Zero

SET_CONFIGURATION SETUP DATA Packet Format

The low-order byte of wValue specifies the desired configuration value. The low-order byte of wlValue must either be zero, or
it must match the configuration value field of a configuration descriptor returned by the device. Specifying a configuration
value of zero sets the device into the address state.

If the device is in the default state, or if the high-order byte of wValue is not zero, windex is not zero, or wLength is not zero,
then the behavior after issuing this request is undefined.

If the specified configuration value is neither zero nor a valid configuration value specified by a configuration descriptor of the
device, the device responds with a Request Error.

GET_INTERFACE

The GET_INTERFACE request has the following SETUP DATA packet format:

‘ bmRequestType H bRequest H wValue H wlndex H wLength H
http://wiki.osdev.org/Universal_Serial_Bus 26/37

25.02.2015 Universal Serial Bus - OSDev Wiki

GET INTERFACE
10

GET_INTERFACE SETUP DATA Packet Format

10000001b Zero || Interface One

The host uses this request to determine which alternate setting (as described in Functions, Configurations, Interfaces, and
Endpoints) is used for a particular interface of the current configuration. The device responds with a one-byte long DATA
packet during the data phase, the transfered byte being the alternate setting value for the interface specified in this request.

If wValue is not zero, wLength is not one, windex specifies an invalid interface, or the device is in the address state, then the
device responds with a Request Error.

The behavior of a device in the default state after receiving this request is undefined.

This request is valid for a device in the configured state.
SET_INTERFACE

The SET_INTERFACE request has the following SETUP DATA packet format:

bmRequestType bRequest wValue wlndex || wLength

SET INTERFACE
11

SET_INTERFACE SETUP DATA Packet Format

00000001b Alternate Setting || Interface | Zero

The host uses this request to select an alternate setting (as described in Functions, Configurations, Interfaces, and Endpoints)
to be used for a particular interface of the current configuration. If the interface specified only supports a default setting, then
the device may return a STALL handshake during the STATUS stage of the request.

If the interface or alternate setting do not exist, or if the device is in the address state, then the device responds with a Request
Error. The behavior of the device is undefined if wlength is not zero, or the device is in the default state.

This is a valid request when the device is in the configured state.

CLEAR_FEATURE

The CLEAR _FEATURE request has the following SETUP DATA | Feature Selector HRecipientHValue‘
packet format:

IDEVICE_REMOTE_WAKEUP|| Device | 1 |

ENDPOINT _HALT Endpoint 0
ITEST_MODE | Device | 2 |
Standard USB Feature Selectors
bmRequestType bRequest wValue windex || wLength
00000000b Zero or
00000001b CLEAR—IiEATURE Feature Selector || Interface or Zero
00000010b Endpoint

CLEAR_FEATURE SETUP DATA Packet Format
The host uses this request to clear or disable a specific feature.

wValue must contain a feature selector (see table of Standard USB Feature Selectors, to the right) which corresponds with the
recipient as specified in the bmRequestType value.

Issuing this request while referencing a feature that cannot be cleared or does not exist, or referencing an interface or endpoint
that does not exist will cause the device to respond with a Request Error.

If the device is in the default state, or wLength is non-zero, then the behavior of the device is undefined.

This request is valid when the device is in the configured state. When the device is in the address state, this request is only
valid when referencing endpoint zero, otherwise the device responds with a Request Error.

http://wiki.osdev.org/Universal_Serial_Bus 27137

25.02.2015
The TEST_MODE feature cannot be cleared by this request.

Universal Serial Bus - OSDev Wiki

SET_FEATURE

The SET_FEATURE request has the following SETUP DATA packet | Value ” Description ‘
format: | 00h ”Reserved ‘
| Olh |TestJ |
| 02h |[Test K |
| 03h [Test_SE0_NAK |
| 04h ||Test_Packet ‘
| 05h ”Test_Force_Enable ‘
| 06h-3Fh ”Reserved for standard test selectors ‘
|3Fh-BFh||Reserved ‘
|C0h-F F h”Reserved for vendor-specific test modes‘

Standard USB Test Selectors

bmRequestType bRequest wValue windex wLength
00000000b Zero or
00000001b SET—F%ATURE Feature Selector || Test selector || Interface or Zero
00000010b Endpoint

SET_FEATURE SETUP DATA Packet Format
The host uses this request to set or enable a specific feature.
wValue must contain a feature selector which corresponds with the recipient as specified in the bmRequestType value.

When wValue selects the TEST MODE feature, bmRequestType and the low-order byte of windex must both be reset to zero.
The high-order byte of windex must be a valid test selector (see table of Standard USB Test Selectors, to the right), or the
device respond with Request Error. The device must set its upstream-facing port into test mode no longer than 3milliseconds
after completing the STATUS stage of this request. In order to exit test mode, the power to the device must be cycled. A
device must support the TEST MODE feature in the default, address, and configured high-speed device states.

If this request references a feature that does not exist or cannot be set, then the devices responds with a STALL handshake
during the STATUS stage.

If an endpoint or interface is specified that does not exist, or if the device is in the address state and an endpoint other than
endpoint zero is specified, the device responds with a Request Error.

Besides requests which select the TEST MODE feature, issuing this request to a device in the default state results in
undefined behavior. A non-zero value for wLength also results in undefined behavior.

This request is valid when a device is in the configured state, or when the device is in the address state and only endpoint zero
is referenced.

GET_STATUS

The GET_STATUS request has the following SETUP DATA packet format:

The host uses this request to learn the status of the recipient, as specified by the bmRequestType field and, in the case of an

bmRequestType bRequest wValue || wIndex | wLength
10000000b Zero or
10000001b GET—S(;[ATUS Zero || Interface or Two
10000010b Endpoint

GET_STATUS SETUP DATA Packet Format

interface or endpoint recipient, the windex field.

http://wiki.osdev.org/Universal_Serial_Bus

28/37

25.02.2015 Universal Serial Bus - OSDev Wiki

If wValue is not zero, wLength is not two, or windex is non-zero when bmRequestType specifies a device recipient, or the
device is in the default state, then the behavior of the device is undefined.

If this request references an endpoint or interface that does not exist (including any endpoint other than endpoint zero when
the device is in the address state), then the device responds with a Request Error.

In response to this request, the device issues a 2 byte long data transfer during the DATA stage to the host. These two bytes
represent the requested status and the meaning depends on the recipient type.

Device Recipient

When the recipient was a device, the two bytes describe the status as follows:

D~y D¢ D5 Dy D3 Dy Dy Dy

Remote|| Self
Reserved (reset to zero) Wakeup [Powered

D15 D14 D13 D12 D11 D10 D9 Dg

| Reserved (reset to zero) |

The Self Powered field is set to 1 to indicate that the device is currently powered by an external power source, or 0 to indicate
that the device is currently running on power supplied by the bus.

The Remote Wakeup field is set to 0 when the device is reset and indicates whether or not the device is currently enabled to
perform remote wakeup signaling (see Remote Wakeup Capability). The host may modify the value of the Remote Wakeup
field by issuing either a CLEAR _FEATURE or SET FEATURE request using the DEVICE REMOTE WAKEUP feature
selector.

Interface Recipient

When the recipient was an interface, the two bytes describe the status as follows:

D5 D¢ Dg Dy D3 Dy Dq Dg

| Reserved (reset to zero) |

Dis D14 D13 D12 D11 Dyo Do Dg

| Reserved (reset to zero) |

Endpoint Recipient

When the recipient was an endpoint, the two bytes describe the status as follows:

D7 D¢ Ds Dy D3 Dy Dy Dy

Reserved (reset to zero) || Halt |

D15 D14 D13 D12 D11 D10 D9 Dg

| Reserved (reset to zero) |

All interrupt and bulk endpoint types must implement the halt feature, otherwise it is optional. The Halt field reflects the status
of the halt feature of the endpoint. A value of 0 in the Halt field indicates that the endpoint is not halted, and a value of 1 in the
Halt field indicates that the endpoint is halted.

http://wiki.osdev.org/Universal_Serial_Bus 29/37

25.02.2015 Universal Serial Bus - OSDev Wiki

The host may set the halt feature of an endpoint with the SET_FEATURE request using the ENDPOINT HALT feature
selector, or the host may clear the halt feature of an endpoint with the CLEAR FEATURE request using the

ENDPOINT HALT feature selector. When the CLEAR_FEATURE request is used in this manner, and the endpoint uses a
data toggle bit, the data toggle bit is reset to zero.

The default control pipe is not required nor recommended to implement the halt feature, but some devices may choose to use
the halt feature on the default control pipe to reflect a functional error condition. When the halt feature is set on the default
control pipe, the device responds with a STALL handshake during the DATA or STATUS stage of all transfers with the
exception of the GET_STATUS, CLEAR_FEATURE, and SET FEATURE standard requests. Additionally, the device is not
required to stall vendor- or class-specific requests when the halt feature is set.

SYNCH_FRAME

The SYNCH_FRAME request has the following SETUP DATA packet format:

bmRequestType bRequest wValue | windex || wLength

SYNCH_FRAME
12

SYNCH_FRAME SETUP DATA Packet Format

10000010b Zero || Endpoint Two

This request is only used for isochronous endpoints that use implicit pattern synchronization. That is, some isochronous
endpoints require per-frame transfers to vary in size according to a specific pattern (in order to attain an application-specific
bit rate, for example). This call causes the device to send the host a 2 byte value that is the number of the frame where the
pattern began.

High-speed isochronous endpoints that support this request must synchronize to the zeroth microframe, as well as have a time
notion of classic frames (1 millisecond as opposed to 125 microsecond intervals).

If wValue is not zero, wLength is not two, or the device is in the default state, then the behavior of the device is undefined.

If the specified endpoint does not support this request, or the device is in the address state, then the device responds with a
Request Error.

This request is valid when the device is in the configured state.
Standard USB Descriptors

A descriptor is a data structure with a defined format. All standard descriptors begin with two bytes. The first byte specifies
the total length of the descriptor in bytes, including the first two mandatory bytes. The second byte identifies the type of the
descriptor.

Some descriptors contain fields which specify an index of a STRING descriptor, but it is optional for a device to support
STRING descriptors. If a device does not support STRING descriptors, then all fields which reference an index of a STRING
descriptor should be reset to zero. Thus, a value of zero in any field that is meant to supply an index of a STRING descriptor
indicates that no such STRING descriptor is available.

If the second byte of a descriptor identifies that descriptor as one of the standard USB descriptors, but the first byte of that
descriptor specifies a length less than the lengths defined in the USB 2.0 specifications (and, transitively, here), then the
descriptor should be rejected by the host. If the length field reports that the descriptor is longer than expected, then the extra
data should be ignored, but still considered part of the descriptor (this is important when the device is returning multiple
descriptors, as is the case when the host requests a CONFIGURATION descriptor).

If class- or vendor-specific descriptors use the same format as standard descriptors (i.e, the two mandatory bytes at the
beginning of the descriptor), then the class- or vendor-specific descriptors are interleaved within the results when the host
requests a CONFIGURATION descriptor. Otherwise, the class- or vendor-specific descriptors are accessed by passing a class-
or vendor-specific descriptor type in a GET_DESCRIPTOR request.

The remainder of this section serves to catalog the standard USB device descriptors and very closely mirrors section 9.6 of the
USB 2.0 specifications. These descriptor definitions supplement the GET _DESCRIPTOR request.

DEVICE

http://wiki.osdev.org/Universal_Serial_Bus 30/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Every USB device has exactly one DEVICE descriptor. This descriptor provides general information about the device, as well
as information that applies globally to the device and all of its configurations.

|Offset| Field |Size| Type || Description |

| 0 ||bLength || 1 || Number ||Size of this descriptor in bytes |

| 1 ||bDescript0rType || 1 || Constant”DEVICE Descriptor Type |
2 ||bcdUSB 2 BCD ||[USB Specification Release Number in Binary-Coded Decimal (i.e, 2.10 is

expressed as 210h). Identifies the release of the USB Specification with with
the device and its descriptors are compliant.

4 |[bDeviceClass 1 Class ||Class code (assigned by the USB-IF)

= This field is reset to zero if each interface within a configuration specifies
its own class information and the various interfaces operate
independently.

= A value of FFh in this field indicates the device class is vendor-specific.

5 ||bDeviceSubClass 1 ||[SubClass||Subclass Code (assigned by the USB-IF)

= The subclass code of a device is qualified by the class code of that
device.

» If bDeviceClass is reset to zero, then this field must also be reset to zero.

= When bDeviceClass is not set to FFh, then all values for this field are
reserved for assignment by the USB-IF.

6 ||bDeviceProtocol 1 || Protocol |[Protocol code (assigned by the USB-IF)

= The protocol code of a device is qualified by both the class and subclass
codes of that device.

= A value of 00h in this field means that the device may specify class-
specific protocols on an interface basis, though this is not a requirement.

= [f this field is set to FFh, then the device uses a vendor-specific protocol.

7 |[bMaxPacketSize0 1 || Number [[Maximum packet size for endpoint zero (8, 16, 32, or 64 are the only valid
options)

8	[idVendor	2	ID	[Vendor ID (assigned by the USB-IF)				
10	[idProduct	2	ID	ProductID (assigned by the USB-IF)				
12	lbcdDevice	2		BCD	Device release number in binary-coded decimal			
14		iManufacturer		1		Index		Index of STRING descriptor describing manufacturer
15		iProduct		1		Index		Index of STRING descriptor describing product
16		iSerialNumber		1		Index		Index of STRING descriptor describing the device's serial number
17		bNumC0nﬁgurations		1		Number		Number of possible configurations

DEVICE_QUALIFIER

A high-speed capable device that has different device information depending on the speed in which the device operating, then
that device must also have a DEVICE _QUALIFIER descriptor. This descriptor provides information about the device that
would change if the device were operating at the alternate speed (i.e, when the device is operating at high-speed, this
descriptor provides the differences if the device were operating a full-speed, and vice versa). This descriptor leaves out fields
from the DEVICE descriptor that would not reasonably depend on the speed of the device (e.g, index of the STRING
descriptor describing the product).

If a full-speed only device with a bedUSB field of at least 0200h in its DEVICE descriptor receives a request for a
DEVICE QUALIFIER descriptor, it must respond with a Request Error.

Offset		Field		Size		Type		Description
0		bLength		1		Number		Size of this descriptor in bytes
1		bDescript0rType		1		Constant”DEVICE_QUALIF IER Descriptor Type		
2 |jbcdUSB ‘ 2 || BCD |[USB Specification Release Number in Binary-Coded Decimal (i.e, 2.00 is
expressed as 200h). Identifies the release of the USB Specification with with

http://wiki.osdev.org/Universal_Serial_Bus 31/37

25.02.2015 Universal Serial Bus - OSDev Wiki

the device and its descriptors are compliant.

This field must be at least 0200h.
4	jbDeviceClass 1		Class		Class code (assigned by the USB-IF)			
5		bDeViceSubClass		1		SubC1ass		Subclass Code (assigned by the USB-IF)
6		bDeViceProtocol		1		Protocol		Pr0tocol code (assigned by the USB-IF)

7 |[bMaxPacketSize0 1 || Number [[Maximum packet size for endpoint zero (8, 16, 32, or 64 are the only valid

options)
| 8 ||bNumConﬁgurati0ns|| 1 || Number ||Number of possible configurations |
| 9 |IbReserved | 1][- |Reserved for future uses, must be zero. |
CONFIGURATION

All USB devices have at least one CONFIGURATION descriptor. The host may request a specific CONFIGURATION
descriptor by its descriptor indexx, which is zero based and has bNum Configurations (as returned in the DEVICE descriptor)
used indices. That is, the valid values to be used as a descriptor index when requesting a CONFIGURATION descriptor are
any integer in the range of 0 to bNumConfigurations-1, inclusive.

Each CONFIGURATION descriptor has at least one INTERFACE descriptor, and each INTERFACE descriptor may have up
to 15 ENDPOINT descriptors. When the host requests a certain CONFIGURATION descriptor, the device returns the
CONFIGURATION descriptor followed immediately by the first INTERFACE descriptor, followed immediately by all of the
ENDPOINT descriptors for endpoints that the interface defines (which may be none). This is followed immediately by the
next INTERFACE descriptor if one exists, and then by its ENDPOINT descriptors if applicable. This pattern continues until
all the information within the scope of the specific configuration is transfered.

When a device has vendor- or class-specific descriptors that conform to the standard USB descriptor format (that is, the first
byte of the descriptor determines the length of the descriptor, and the second byte identifies the type of descriptor), those
descriptors are also returned interleaved among the CONFIGURATION, INTERFACE, and ENDPOINT descriptors when the
host requests a specific CONFIGURATION descriptor. Therefore, the system software cannot assume continuous standard
descriptors as implied by the previous paragraph; instead, the system software should check the descriptor type and skip that
descriptor if it is not a standard descriptor. The software should also check that standard descriptors report at least the expected
length.

Note that the CONFIGURATION descriptor index is not the same as the value bConfigurationValue in the
CONFIGURATION descriptor. bConfigurationValue is the value that the host passes as a parameter with the

SET CONFIGURATION request in order to select a particular configuration, whereas this cannot be done using the
CONFIGURATION descriptor index.

|Offset|| Field |Size|| Type || Description |

| 0 ||bLength || 1 ||Number ||Size of this descriptor in bytes |

| 1 HbDescriptorType H 1 ||ConstantHCONFIGURATION Descriptor Type ‘
2 |wTotalLength 2 ||Number || The total combined length in bytes of all the descriptors returned with the

request for this CONFIGURATION descriptor (including CONFIGURATION,
INTERFACE, ENDPOINT, class- and vendor-specific descriptors).

| 4 ||bNumInterfaces || 1 || Number ||Number of interfaces supported by this configuration

5 ||bConfigurationValue|| 1 || Number |[Value which when used as an argument in the SET_CONFIGURATION
request, causes the device to assume the configuration described by this

descriptor.
| 6 HiConﬁguration H 1 || Index HIIldCX of STRING descriptor describing this configuration.
bmALttributes 1 || Bitmap ||Configuration Characteristics

D7y D¢ Dj Dy D3 Dy Dy Dg

D7 Reserved, must be set to one for historical reasons
Dg Self-Powered

= (0 = Device runs on power supplied by the bus

http://wiki.osdev.org/Universal_Serial_Bus 32/37

25.02.2015 Universal Serial Bus - OSDev Wiki

= 1 =Device provides a local power source, if bMaxPower
is non-zero, the device also may use bus power.

Dg Remote Wakeup

= (0 = Remote Wakeup not supported
= | = Remote Wakeup supported

Dy4...0 Reserved, reset to zero

8 |[bMaxPower 1 mA ||[Maximum power consumption of this device from the bus when fully
operational and using this configuration.

= Expressed in units of 2mA (i.e., a value of 50 in this field indicates
100mA).

= A device reports with the bmAttributes field whether the configuration is
bus- or self-powered, but the device status (retrieved with a
GET _STATUS request) reports whether the device is currently self-
powered.

= Ifa device is disconnected from an external power source, it may not
draw more power from the bus than specified in this field.

= Some devices may be able to operate solely on bus power. A device that
cannot and has lost its external power source will fail the operations it can
no longer support. It is up to the software on the host to determine when
this is the case, which may be accomplished with a GET STATUS
request.

OTHER_SPEED CONFIGURATION

This descriptor describes the configuration of a high-speed device if it were operating at it's alternative speed. The host should
not request this descriptor unless it already successfully received a DEVICE_QUALIFIER descriptor from the device. The
structure of the OTHER SPEED CONFIGURATION is identical to that of the CONFIGURATION descriptor shown above.
The only difference is that the bDescriptorType field reflects that the descriptor is an OTHER _SPEED CONFIGURATION
descriptor rather than a CONFIGURATION descriptor.

INTERFACE

INTERFACE descriptors are only returned following a CONFIGURATION descriptor when the host requests a specific
CONFIGURATION descriptor; it is not possible to directly request a specific INTERFACE descriptor. An interface may
provide alternate settings within a configuration that allow the endpoints and/or their characteristics to be varied. A default
interface has the bA/ternateSetting field in its INTERFACE descriptor reset to zero.

Offset		Field	Size]	Type		Description		
0		bLength		1		Number		Size of this descriptor in bytes
1		bDescript0rType		1		Constant		INTERFACE Descriptor Type

2 ||bInterfaceNumber || 1 || Number |[Number of this interface. Zero-based value which identifies the index of this
interface in the array of interfaces supported within a configuration.

3 ||bAlternateSetting 1 || Number ||Value used to select the alternate settings described by this INTERFACE
descriptor for the interface with the binterfaceNumber in the previous field. This
value is zero if this descriptor describes the default settings for a particular

interface.
| 4 ||bNumEndp0ints || 1 || Number ||Number of endpoints used by this interface, not including endpoint zero. |
5 ||bInterfaceClass 1 Class ||Class code (assigned by the USB-IF)

= A value of zero here is reserved for future standardization.
= [f this value is FFh, the interface class is vendor-specific.
= All other values are reserved for assignment by the USB-IF.

6 |[bInterfaceSubClass|| 1 ||SubClass|[Subclass code (assigned by the USB-IF)

http://wiki.osdev.org/Universal_Serial_Bus 33/37

25.02.2015 Universal Serial Bus - OSDev Wiki

= The subclass code in this field is qualified by the value of the
binterfaceClass field.

» If binterfaceClass is reset to zero, then this field must also be reset to zero.

» If bInterfaceClass is not set to the value of FFh, then all values of this field
are reserved for assignment by the USB-IF.

7 ||bInterfaceProtocol || 1 || Protocol ||Protocol code (assigned by the USB-IF)

= The protocol code in this field is qualified by the values of the
binterfaceClass and binterfaceSubClass fields.

= If an interface supports class-specific requests, then this field identifies the
protocols that the device uses as defined by the specifications of the device
class.

= [fthis field is reset to zero, then the device does not use a class-specific
protocol on this interface.

= [fthis field is set to FFh, then the devices uses a vendor-specific protocol
on this interface.

| 8 ||iInterface || 1 || Index ||Index of STRING descriptor describing this interface

ENDPOINT

Each endpoint used for a particular interface has a descriptor which follows after that particular interface's descriptor when the
host requests a specific CONFIGURATION descriptor; the host cannot request a specific ENDPOINT descriptor explicitly.
And ENDPOINT descriptor never describes endpoint zero.

Offset		Field		Size		Type		Description
0		bLength		1		Number		Size of this descriptor in bytes
1		bDescriptorType		1		C0nstant		ENDPOINT Descriptor Type

2 ||bEndpointAddress|| 1 ||Endpoint||The address of the endpoint on the USB device described by this descriptor. This
field has the following format:

D7 D¢ Djs Dy D3 Dy D Do

D7 Direction (ignored for control endpoints)

= 0= OUT endpoint
= | =]IN endpoint

De...4 Reserved, reset to zero
D3..0 Endpoint Number

3 ||bmAttributes 1 || Bitmap |[This field describes the endpoint's attributes as follows:

D7 Dg Djs Dy D3 Dy D Do

D76 Reserved, reset to zero

D54 Usage Type (Isochrgnous endpoints only; reserved and reset to
zero for other endpoints)

= 00 = Data endpoint

= 01 = Feedback endpoint

= 10 = Implicit feedback data endpoint
= 11 =Reserved

D3, » Synchronization Type (Isochronous endpoints only; reserved
and reset to zero for other endpoint types)

= 00 = No synchronization
= 01 = Asynchronous

http://wiki.osdev.org/Universal_Serial_Bus 34/37

25.02.2015

Universal Serial Bus - OSDev Wiki

= 10 = Adaptive
= |1 = Synchronous

D10 Transfer Type

= (00 = Control

= (01 = Isochronous
= 10=Bulk

= 11 = Interrupt

4 |[wMaxPacketSize

2 || Number

Maximum packet size that this endpoint is capable of sending or receiving.

= For isochronous endpoints, this value is used to reserve bus time; the pipe,
however, may not always use all of the reserved bus time.
= Bits 10...0 specify the maximum packet size in bytes.
= For high-speed isochronous and interrupt endpoints, bits 12...11 specify the
number of additional transaction opportunities per microframe (see High-
Speed, High-Bandwidth Endpoints). The format is as follows:
= 00 =None (1 transaction per microframe)
= (01 =1 additional (2 transactions per microframe)
= 10 =2 additional (3 transactions per microframe)
= 11 =Reserved
= Bits 15...13 are reserved and must be reset to zero.

6 ||blnterval

1 || Number

Interval for polling a device during a data transfer, expressed in units of
microframes for high-speed devices, and frames for low- and full-speed devices.
The exact meaning of the value in this field depends on the endpoint type and the
operating speed of the device:

= Full- and High-speed isochronous endpoints, and high-speed interrupt
endpoints:
= This field must be in the range from 1 to 16.

= This field is used to calculate the period as 207t€rval =1 Tpatis 5

value of 4 calculates to 2% -1 =23 =3
= Full- and Low-speed interrupt endpoints:
= This field must be in the range from 1 to 255.
s High-speed bulk and control OUT endpoints:
= This field must be in the range from 0 to 255.
= This field specifies the maximum NAK rate of the endpoint.
= A value of zero indicates that the endpoint never NAKs
= Other values indicate at most 1 NAK each blnterval number of
microframes.
= See PING Transaction Protocol

STRING

Devices may optionally support STRING descriptors. If a device does not support STRING descriptors, any field which
references the index of a STRING descriptor must be reset to zero. STRING descriptors use unicode encodings and may
support multiple languages. The host requests a STRING descriptor with the GET _DECRIPTOR request and must pass the
16-bit LANGID (as defined by the USB-IF) of the desired language in the windex field. The list of currently accepted
LANGIDs is located here (http://www.usb.org/developers/docs/USB_LANGIDs.pdf) .

String index 0 for all languages returns a STRING descriptor that contains an array of all the two-byte LANGID codes that the

device supports.

Whether requesting a string or an array of LANGIDs, the data is not NULL-terminated. Instead, the host determines the length
of the data by subtracting 2 from the bLength field of the descriptor.

When the host requests string index 0, the following descriptor is returned:

|Offset|| Field ||Size|| Type || Description |

| 0 ||bLength || 1 ||Number||Size of this descriptor in bytes|

http://wiki.osdev.org/Universal_Serial_Bus

35/37

25.02.2015 Universal Serial Bus - OSDev Wiki

| 1 |jbDescriptorType|| 1 |[Constant|STRING Descriptor Type |
| 2 |wLangID[0] || 2 |[Number|LANGID code zero |

T - -1 - | |

| N |[wLangID[x] || 2 |[Number|LANGID code x |

When the host requests a valid string index other than string index 0 for a supported LANGID, the following descriptor is
returned:

|OffsetH Field HSizeH Type || Description ‘
| 0 HbLength H 1 ”Number”Size of this descriptor in bytes’
| 1 HbDescriptorTypeH 1 HConstant”STRING Descriptor Type ’
| 2 HbString H N HNumber”Unicode string ’

Typical organization of system software

This section discusses how system software is typically, reasonably organized. This section also serves as an index to the wiki
entries which provide, or will provide, farther information and perhaps programming examples.

USB Deyvice Drivers

As with any device driver, a USB device driver abstracts away from the low-level details on just how a specific device is
being accessed, and provides the rest of the system and applications with a common interface (e.g, a file manager shouldn't
have to know whether it is dealing with an external versus internal hard drive).

USB device drivers typically implement a certain class of device as per the appropriate specifications. Such classes of USB
devices include, but are not limited to:

= USB Mass Storage Class Devices
= USB Human Input Devices

USB Driver

Even a USB device driver need not be concerned with some of the lower-level details. For instance, it shouldn't matter to the
device driver if a device is connected directly to the root hub, or if it lies behind 3 hubs. The device driver shouldn't worry
about how much power the device needs from the bus. This is where the USB driver comes in.

The USB driver essentially provides the USB framework interface to device drivers. The USB driver also handles connect and
disconnect events on the USB, as well as determining which device driver is needed (according to the Class, Subclass, and
Protocol codes), and if that device driver even exists.

USB Hub Driver

Although the USB Driver knows some details about the USB topography, the responsibility of hub-specific communication
(including split-transactions) is often separated from the USB Driver into another module called the USB Hub Driver.

Depending on the design of the system, the USB Driver might bypass the USB Hub Driver when communicating with devices
on the root hub, or the system may use the reserved address of 0 to indicate the root hub to the USB Hub Driver (it appears
that Linux does this).

Details on USB Hubs will eventually be discussed in the USB Hubs wiki entry.
Host Controller Driver

As a request for a data transfer moves from the device driver, through the USB Driver, and through the USB Hub Driver, the
request gains all the information needed for the host controller to generate the appropriate transactions on the bus. However,
depending on the host controller, this information needs to be formatted in a certain way and added for scheduling by the host
controller.

This task if given to the host controller driver. Requests reach the host controller driver in a system-defined format, often
called a USB Request Block (URB), or an I/O Request Packet (IRP).

http://wiki.osdev.org/Universal_Serial_Bus 36/37

25.02.2015 Universal Serial Bus - OSDev Wiki

Additionally, host controller drivers are loaded by the PCI subsystem when a corresponding host controller is discovered
during PCI enumeration. The host controller driver is thus also responsible for initializing the host controller and perhaps
loading the USB Hub Driver and the USB driver. Combined, the USB driver, USB hub driver, and the host controller driver
make up a USB subsystem.

Links

USB.org (http://www.usb.org’/home)

USB Universal Serial Bus Revision 2.0 Specification (http://www.usb.org/developers/docs/usb 20 110512.zip)

Univseral Serial Bus Revision 3.0 Specification (http://www.usb.org/developers/docs/usb 30 spec 122012.zip)

Wireless USB Specification Revision 1.1 (http://www.usb.org/developers/wusb/wusbl 1 20100910.zip)

The Linux kernel (http://www .kernel.org/) (though things tends to be confusing there, and you have to be careful with

educating yourself from Linux sources if your project isn't GPL'ed).

= USB in a Nutshell (http://www.beyondlogic.org/usbnutshell/usb1.htm) may also interest you. It looks like a really good
tutorial giving all the required knowledge to understand any other USB documentation/source code in a couple of
HTML pages ...

= Currently accepted LANGIDs (http://www.usb.org/developers/docs/USB_LANGIDs.pdf)

Forum Topics

= Implementing USB Support - Briefly covers the necessary steps in EHCI configuration to ensure that the UHCI or
OHCI companion controllers can handle all USB devices (e.g, before EHCI support is implemented where some BIOS
may configure a device via EHCI during boot). May also be helpful for those new to EHCI who aren't sure how to
manipulate/use the EHCI's registers.

= USB driver - suggests a few startup links about USB

= Collecting links about USB - PypeClicker and Df's collection of links about USB

Retrieved from "http://wiki.osdev.org/index.php?title=Universal_Serial Bus&oldid=15102"
Categories: USB | Buses

= This page was last modified on 15 August 2013, at 04:59.
= This page has been accessed 146,985 times.

http://wiki.osdev.org/Universal_Serial_Bus 37137

