25.02.2015 Troubleshooting - OSDev Wiki

Troubleshooting

From OSDev Wiki

Contents

= | Providing a basic debugging environment
= 1.1 Exception handlers
= 1.1.1 What to do if characters cannot be displayed
= 1.1.2 Avoiding exception loops
= 1.1.3 Showing the stack content
= 1.1.4 Locating the Faulty instruction
= 1.1.5 Locating the offending line of source code
= 1.2 Enhanced debugging techniques
= 1.2.1 Stack tracing
= 1.3 Debugging techniques
= 2 External assistance
= 2.1 Debugging interface
= 3 See Also
= 3.1 Articles

Providing a basic debugging environment

Exception handlers

The first thing ever to do is to implement a reliable 'exception handler' which will tell you what went
wrong. Under an emulator like Bochs, the absence of such a handler will lead to a '3rd Exception
without resolution' panic message (a.k.a Triple Fault), if the emulator is configured to do so... On bare
hardware, it will simply reset your computer with a laconic 'bip'.

Every time the CPU is unable to call some exception handler, it tries to execute the Double Fault
exception handler. If it fails to call it either, a Triple Fault occurs. Also keep in mind that exceptions
cannot be masked, so either your code is perfect or you need exception handlers. Also keep in mind that
when you run applications zheir code must be perfect without exception handlers, so it's a good idea to
get them quite quickly.

It's quite convenient to have the exception handler showing what kind of exception occurred before
anything 'hazardous' is attempted. Displaying, for instance, the (hexadecimal) exception number in a
corner of the screen, can save you hours of debugging. :)

exc_0d_handler:
push gs
mov gs,ZEROBASED_DATA_SELECTOR
mov word [gs:0xb8000],'D '
55 D in the top-left corner means we're handling
55 a GPF exception right ATM.

http://wiki.osdev.org/Troubleshooting 1/8

25.02.2015 Troubleshooting - OSDev Wiki

55 your 'normal' handler comes here
pushad

push ds

push es

mov ax,KERNEL_DATA_SELECTOR

mov ds,ax

mov es,ax

call gpfExcHandler

pop es
pop ds
popad

mov dword [gs:0xb8000],"' D-'

55 the 'D' moved one character to the right, Lletting

55 us Rnow that the exception has been handled properly
55 and that normal operations continues.

pop gs

iret

Once you have implemented such a technique, it may be wise to test it, deliberately issuing 'faulty’
instructions to see if the correct code is displayed. Having the 'double fault' exception (08) displayed
somewhere else on the screen may also be a smart move.

What to do if characters cannot be displayed

Such things occurs for instance when your GDT or paging tables has been badly configured (e.g.
0xb8000 no longer refers to the video memory). Fortunately enough, the video memory is not your sole
communication technique with your kernel:

= you may use the keyboard LEDs to report some events (for instance enabling the 'scroll lock' LED
when you're a handler and disabling it when you're out).

= you may use the internal PC Speaker to make Morse-code-like signals reporting early errors.
(May be disgraceful if coding late, though.)

= you may use VGA registers to change the background color or the overscan (screen border) color
to report the current 'state' of your kernel. (E.g. black = normal operations, yellow = processing
interrupt, red = crash condition occurred (just before cli:hlt), blue = processing an exception,
etc...)

Refer to VGA Resources to see how you can modify colors. The resources page should have all the
documentation for LED flashing and speaker beeping.

= you may output bytes via the serial port. Most emulators allow you to redirect these characters
into a file and unlike the screen the number of characters is not limited. A driver for the serial port
is also very easy to implement.

Avoiding exception loops

http://wiki.osdev.org/Troubleshooting 2/8

25.02.2015 Troubleshooting - OSDev Wiki

So we know when exceptions occur and which exception occurred. That's better but still not especially
useful. Your exception handler is likely to become something complex as your kernel will evolve, and
you'll discover that exceptions mainly occur ... in exception handlers.

In order to avoid recursive exceptions to occur endlessly, you can easily maintain a 'nested exceptions
counter' that will be incremented every time you enter an exception handler and decremented just before
you leave that handler. If the counter is above a certain threshold of a few units (3 should give
interesting enough results), the kernel will abort trying to solve the exception and enter a 'panic' mode
(red background, flashing LED, whatever).

// called by the stub
void gpfExcHandler(void) {
(nestexc > MAX_NESTED_EXCEPTIONS) panic();
nestexc++;

(!fix_the_error()) {
write_an_error_message();

}

nestexc--;

You need to know, of course, that some exceptions are not 'resumable'. If your kernel issued a division
by zero, trying to return to the 'div' instruction will only trigger the exception one more time (yeah!
altogether, now :). Such loops cannot be solved by the 'nestexc' counter

Showing the stack content

Much of your program's state (function arguments, return address, local variables) is stored on the stack,
especially when using C/C++ code. A complete debugger (like GDB) will inspect the debugging info to
give names to the stack content, provide a list of calls, etc. This is a bit complex to do ourselves, but if
your kernel can simply show the content of the stack and if you know where in the code the process
halted, you can already fix quite a lot of bugs by doing the job of the debugger yourself, guessing which
stack location holds which variable, where the return addresses are, etc.

The stack content is still in memory. The EBP value of the erroring process is still in memory, and
points to the start of the stack frame for the current function. Everything from this address and up was
the current stack. Now, you can use the value in ebp as the source. Just use the following call:

stack _dump:
push ebp
mov ebp, esp
call dump_hex
pop ebp
ret ; note that this 1s not going to work, but it should be here for cc
[[»

http://wiki.osdev.org/Troubleshooting 3/8

25.02.2015

Troubleshooting - OSDev Wiki

and use void dump_hex(char *stack).

Locating the Faulty instruction

In most cases, when your exception handler is called, the address of the faulty instruction is somewhere

on the stack. The first step here is to print out the address of this instruction.

Once this is done, you (as a human) can inspect the /inker map and find out in which object file the
problem was. You can request a map with 1d <usual options> -Map <filename.map>.

0x0000000000005330
0x0000000000005370
0x0000000000005380
0x0000000000005400
0x0000000000005830
0x0000000000005886
0x0000000000005890
0x0000000000005ac0
0x0000000000005b70
0x00000000000059b0
0x0000000000005€60
0x0000000000005dd0
0x0000000000005d10
0x0000000000005890

Ox556 bin/init.o

kinit_dsp_buffer
kinit_glocal_tag

kinit
kreset
Oxa 00
ox66d bin/kalloc.o
kfree

kmRegister

kealloc
kmFindP
kmFindA

kmSetFull

kalloc

...

Is an example of what a map can look like. If the error address was 0x554f, we can tell from this that the
error is somewhere in init.0, and most likely in kinit() function (it may still be in some other function if
there are some static functions in the source file). All we know is that the error occurred at offset +21f in
the file.

Now, we can use objdump -drS bin/init.o to get a look at the disassembled output. Note that this step
will work properly only if you had enabled debug information in those separated .o files...

#ifdef

216:
219:

2le:
21f:

224:

#endif

__DEBUG__
kprint("kernel in debug-mode(%x) press [SHIFT+SPACE] to bypass anykey(]

83 c4 f8

al 00 00 00 00

50

68 a0@ 01 00 00

e8 fc ff £f ff

DbMsk) ;

add
mov
21a: R_386_32
push
push
220: R_386_32
call

$oxFffffff8,%esp
0x0, %eax
DbMsk
%eax
$0x1a0
.rodata
225 <kinit+0x155>

225: R_386_PC32 kprint

Of course, as I picked up a random address, there's nothing wrong to see at +21f, but I guess you got my
point. :)

Locating the offending line of source code

http://wiki.osdev.org/Troubleshooting

4/8

25.02.2015 Troubleshooting - OSDev Wiki

Once you have found the address of the faulty instruction in the previous step, you can identify the
corresponding line of source code by running

Enhanced debugging techniques
Stack tracing

By analyzing the default way to create a stack frame, you can rip off a stack frame at a time, resulting in
the call sequence that leads to the fault. For a single bonus point, also extract the arguments and dump
them as well. For multiple bonus points, use C++ name mangling, and export the arguments in readable
form in the correct type.

Each time a function is called it gets the following head/tail: (GCC 3.3.2)

push ebp

mov ebp, esp
leave

ret

On the place of the ... the rest of the code is filled in. Now, if you analyze the stack output, it looks
something like:

100POFFCO QOOOFFDO -> this is the result of a push EBP (which pushes the esp at the start of the previous function)
ieeeeFFc4 001023A5 -> this was the old EIP, which can be looked up in the function table (map file)
'900OFFC8 01234567 -> this is an argument

1POOOFFCC 89ABCDEF -> this is another argument

10POOFFDO Q0OOFFFO -> this is again another EBP

10OOOFFD4 00105BC3 -> this is again an EIP

100POFFD8 ©01023A5 -> this is an argument (could be a function pointer)

50000FFDC 01234567 -> this is another argument

'000OFFEQ 89ABCDEF -> this is again an argument

1DOOOFFE4 0©00B800O -> this is an argument, but not to this function

1DOPOFFE8 FFCO0ORO -> this is again an argument to a different function

|1DOROFFEC 00010000 -> this is again another argument, but again not to this function.

1000OFFFO QOOOFFFC -> this is the previous EBP again (note this is in this case the top)

EOO@OFFF4 0010002C -> this is an old EIP

'0000FFF8 00000001 -> this is an argument

1000OFFFC 00000000 -> this is the EBP at the start of the first function, not necessarily valid!

Now, you can traverse along the path of execution. The content of EBP is the old value of EBP, that s,
the one of the last stack frame. The value above that is the old instruction pointer (which points inside
the current function), and the values above that, up to but not including the value pointed to by the old
EBP, are the arguments. Note that the arguments don't have to belong to this function, GCC occasionally
saves an add to esp by not popping the values. By then pretending the old EBP is the current EBP, you
can unwind another call. Do this until you are fed up by it, you have enough output or the stack ends. If
the last one, watch out for not generating a double fault.

If you use C++ name mangling, the arguments are encoded in the function name. If you can read that,
you can decode what the value on the stack must be, so you can actually present it to the user in the form
of a normal function call with legible arguments and everything. This is the 'créeme de la créme' of stack

http://wiki.osdev.org/Troubleshooting 5/8

25.02.2015 Troubleshooting - OSDev Wiki

dumping methods, so most aren't expected to do this.

While I program my kernel in C, I actually thought of writing a script that would parse the header files
for function declarations, extract the debugging symbols from the compiled kernel image using objdump,
and write a system map which would provide the types. Forgot it after falling in love with Bochs'
debugger though. Similarly, typemaps for structured types could be created, which would allow the
same kind of browsing that GDB or Visual Studio give you. THIS would be the créme de la creme.

Debugging techniques

If your function x() wreaks havoc only after 1000 calls it may not suffice to put a panic() statement
inside the functions to see where the functions breaks. You may want to know which call is malignant.
To do this, one might use a global or static var to count calls and panic() after an amount to see if it
managed to crash. If not, you try twice that amount; if it does crash, you try bisection to find the amount.

void scheduler choose task() {
static uint32_t Z=0;
Z++;
uint32 t N = 1000;
(Z > N) panic(); //find the largest integer N for which it crashe
(in_critical section()) ;

Z++;
uint32 t N = 1000;
//we get here,
(in_critical_section()) ;
(Z > N) panic(); //do we get here to panic() before

However as complexity rises or multithreading is involved, it is less probable that a crash would be
consistently occurring at the same point, after the same amount of calls every time. Then it would not be
possible to find the number of the call to scheduler_choose_talk() that crashes it (because that number
changes). Debugging needs some imagination; what if you knew, by tracing the program flow with
print(__LINE_) that scheduler_choose_task() crashes only when a call to fun1() is in progress? You
might use a global var uint32_t dbg or an array (uint32_t dbg[20]) of various dbg vars (which are used
only in debugging code which is cleaned after the programmer ceases to debug) in a manner such as:

void funl() {
dbg[3] = 1;

F(x()) { dbg[3]-0; -

http://wiki.osdev.org/Troubleshooting 6/8

25.02.2015 Troubleshooting - OSDev Wiki

dbg[3] = ©;

void scheduler_choose_task() {

// 1f (dbg[3]==1) panic(); //check here.. a panic saves the
(in_critical_section()) 5
(dbg[3]==1) panic(); //check here.. it crashes

(Or mix it with a call count, z++; if (z>5 && dbg[3] == 1) panic().)

Using the _ LINE__ aids tracing the program flow:

See Uses for debugging for more info.

External assistance

So far, we assumed that the kernel was containing all the information required for debugging (like
symbols names, etc). In production-stage, however, this information, as well as most of the 'debugging
prints' have usually been stripped out of the final binary object.

Still, one could imagine a kernel that would be equipped with serial-line communication code and
connected to another computer that would have all the 'removed' information (like the symbols map, or
the debugging-info featured intermediate binaries).

In case of a panic, the kernel could for instance send the value of eip over the serial line and expect the
helper PC to reply with the function name and line number corresponding to that address (or dump it on
the helper PC's screen, that's a matter of choice :)).

Debugging interface

Now we have plenty of information about what was wrong... can we ask for more ? what do Mobius'
debugging shell and Clicker's information panels tell us ...

Does anybody else know of an OS that allows the hacker to interactively probe the system state when
crashes occur ?

Yes. Guess. Correct: AmigaOS. ;-) It offered a mode that allowed debugging over serial line even
after the system went into Guru Meditation. That was possible because AmigaOS enjoyed a 256 /
512 kByte ROM image that could not get corrupted. - MartinBaute

http://wiki.osdev.org/Troubleshooting 7/8

25.02.2015 Troubleshooting - OSDev Wiki

Unix systems traditionally write their state to /dev/core for offline guru meditation

See Also

Articles

= How Do I Use A Debugger With My OS

Retrieved from "http://wiki.osdev.org/index.php?title=Troubleshooting&oldid=16322"
Category: Troubleshooting

= This page was last modified on 29 April 2014, at 11:47.
= This page has been accessed 40,737 times.

http://wiki.osdev.org/Troubleshooting

8/8

