25.02.2015 Task state segment - Wikipedia, the free encyclopedia

Task state segment

From Wikipedia, the free encyclopedia

The task state segment (TSS) is a special structure on x86-based computers which holds information
about a task. It is used by the operating system kernel for task management. Specifically, the following
information is stored in the TSS:

= Processor register state

I/O port permissions

Inner-level stack pointers
Previous TSS link

All this information should be stored at specific locations within the TSS as specified in the IA-32
manuals.

Contents

1 Location of the TSS
= 2 Task register

= 3 Register states

= 4 [/O port permissions

= 5 Inner-level stack pointers

= 6 Previous TSS link

» 7 Use of TSS in Linux

= 8 Exceptions related to the TSS
= 9 TSS in x86-64 mode

= 10 References

= 11 External links

Location of the TSS

The TSS may reside anywhere in memory. A special segment register called the task register (TR) holds
a segment selector that points to a valid TSS segment descriptor which resides in the GDT (a TSS
descriptor may not reside in the LDT). Therefore, to use a TSS the following must be done by the
operating system kernel:

1. Create a TSS descriptor entry in the GDT
2. Load the TR with a segment selector for that segment

3. Add information to the TSS in memory as needed

For security purposes, the TSS should be placed in memory that is accessible only to the kernel.

http://fen.wikipedia.org/wiki/Task_state_segment 1/4



25.02.2015 Task state segment - Wikipedia, the free encyclopedia

Task register

The TR register is a 16-bit register which holds a segment selector for the TSS. It may be loaded through
the LTR instruction. LTR is a privileged instruction and acts in a manner similar to other segment
register loads. The task register has two parts: a portion visible and accessible by the programmer and an
invisible one that is automatically loaded from the TSS descriptor

Register states

The TSS may contain saved values of all the x86 registers. This is used for task switching. The operating
system may load the TSS with the values of the registers that the new task needs and after executing a
hardware task switch (such as with an IRET instruction) the x86 CPU will load the saved values from
the TSS into the appropriate registers. Note that some modern operating systems such as Windows and

Linux!' do not use these fields in the TSS as they implement software task switching.

I/O port permissions

The TSS contains a 16-bit pointer to I/O port permissions bitmap for the current task. This bitmap,
usually set up by the operating system when a task is started, specifies individual ports to which the
program should have access. The I/0 bitmap is a bit array of port access permissions; if the program has
permission to access a port, a "0" is stored at the corresponding bit index, and if the program does not
have permission, a "1" is stored there. The feature operates as follows: when a program issues an x86
I/O port instruction such as IN or OUT (see x86 instruction listings), the hardware will do an [/O
privilege level (IOPL) check to see if the program has access to all I/O ports. If the CPL of the program
1s numerically greater than the IOPL (the program is less-privileged than what the IOPL specifies), the
program does not have I/O port access to all ports. The hardware will then check the I/O permissions
bitmap in the TSS to see if that program can access the specific port in the IN or OUT instruction. If the
bit in the I/O port permissions bitmap is clear, the program is allowed access to this port, and the
instruction is allowed to execute. If the bit is set, the program does not have access and the processor
generates a general protection fault. This feature allows operating systems to grant selective port access
to user programs.

Inner-level stack pointers

The TSS contains 6 fields for specifying the new stack pointer when a privilege level change happens.
The field SSO contains the stack segment selector for CPL=0, and the field ESPO/RSPO contains the new
ESP/RSP value for CPL=0. When an interrupt happens in protected (32-bit) mode, the x86 CPU will
look in the TSS for SSO and ESPO and load their values into SS and ESP respectively. This allows for
the kernel to use a different stack than the user program, and also have this stack be unique for each user
program.

A new feature introduced in the AMD64 extensions is called the Interrupt Stack Table (IST). This also
resides in the TSS and contains logical (segment+offset) stack pointers. An interrupt descriptor table
may specify an IST entry to use (there are 8). If that is the case, the processor will load the new stack
from the IST instead. This allows known-good stacks to be used in case of serious errors (NMI or
Double fault for example). Previously, to do this, the entry for the exception or interrupt in the IDT
pointed to a task gate. This cause the processor to switch to the task that is pointed by the task gate. The
original register values were saved in the TSS current at the time the interrupt or exception occurred, and

http://fen.wikipedia.org/wiki/Task_state_segment 2/4



25.02.2015 Task state segment - Wikipedia, the free encyclopedia

the processor then set the registers, including SS:ESP, to a known value specified in the TSS and saved
the selector to the previous TSS. The problem here is that hardware task switching is not supported on
AMDG64.

Previous TSS link

This is a 16-bit selector which allows linking this TSS with the previous one. This is only used for
hardware task switching. See the IA-32 manuals for details.

Use of TSS in Linux

Although a TSS could be created for each task running on the computer, Linux kernel only creates one
TSS for each CPU and uses them for all tasks. This approach was selected as it provides easier
portability to other architectures (for example, the AMDG64 architecture does not support hardware task
switches), and improved performance and flexibility. Linux only uses the I/O port permission bitmap
and inner stack features of the TSS; the other features are only needed for hardware task switches, which

the Linux kernel does not use.[!

Exceptions related to the TSS

The x86 exception vector 10 is called the Invalid TSS exception (#TS). It is issued by the processor
whenever something goes wrong with the TSS access. For example, if an interrupt happens in CPL=3
and is transferring control to CPL=0, the TSS is used to extract SSO and ESPO/RSPO for the stack
switch. If the task register holds a bad TSS selector, a #T'S fault will be generated. The Invalid TSS
exception should never happen during normal operating system operation and is always related to kernel
bugs or hardware failure.

For more details on TSS exceptions, see Volume 3a, Chapter 6 of the IA-32 manual.[’]

TSS in x86-64 mode

The x86-64 architecture does not support hardware task switches. However the TSS can still be used in a
machine running in the 64 bit extended modes. In these modes the TSS is still useful as it stores:

1. The stack pointer addresses for each privilege level.

2. Pointer Addresses for the Interrupt Stack Table (The inner-level stack pointer section above,
discusses the need for this).

3. Offset Address of the 1O permission bitmap.

Also, the task register is expanded in these modes to be able to hold a 64-bit base address.

References

1. ~ Bovet, Daniel Pierre; Cesati, Marco (2006). Understanding the Linux Kernel, Third Edition
(http://books.google.com/?
1d=h011tXyJ 8alC&lpg=PA104&dq=Linux%20hardware%20TSS&pg=P A104#v=onepage&q=Linux%20hardw
are%20TSS). O'Reilly Media. p. 104. ISBN 978-0-596-00565-8. Retrieved 2009-11-23.

http://fen.wikipedia.org/wiki/Task_state_segment 3/4



25.02.2015 Task state segment - Wikipedia, the free encyclopedia
2. ~ Daniel P. Bovet; Marco Cesati (2006). "Understanding the Linux Kernel" (http://books.google.com/books?

1d=hO0ltXyJ8alC&pg=PT122&Ipg=PT122&dq=tss+linux&source=bl&ots=gN8ol T4eM V&sig=pEfnVyqpJCd

233hVWBCO-pX550Q&hl=en&sa=X&ei=DxkMU92-
LtHJsga7w4DIAQ&redir_esc=y#v=onepage&q=tss%20linux&f=false). books.google.com. O'Reilly. p. 104.
Retrieved 2014-02-25.

3. ~ "Intel 64 and TA-32 Architectures Software Developer’s Manual Volume 3a"
(http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html).
Retrieved 21 May 2012.

External links

= Demonstration program for TSS (http://wiki.osdev.org/JohnBurger:Demo)

Retrieved from "http://en.wikipedia.org/w/index.php?title=Task state segment&oldid=639965441"

Categories: X86 architecture

= This page was last modified on 28 December 2014, at 17:31.

» Text is available under the Creative Commons Attribution-ShareAlike License; additional terms
may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a
registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

http://fen.wikipedia.org/wiki/Task_state_segment

44



