25.02.2015

Task State Segment

From OSDev Wiki

The Task State Segment (TSS) is a special data structure for x86 processors which holds information
about a task. The TSS is primarily suited for hardware multitasking, where each individual process has
its own TSS. In Software multitasking, one or two TSS's are also generally used, as they allow for
entering ring0 code after an interrupt.

Contents

m | Structure

= 2 TSS in software multitasking

s 3 See Also

s 3.1 Threads
s 3.2 External Links

Structure

offset
0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24
0x28
0x2C
0x30
0x34
0x38
0x3C
0x40
0x44

31-16 15-0
reserved LINK
ESPO
reserved SSO
ESP1
reserved SS1
ESP2
reserved SS2
CR3
EIP
EFLAGS
EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

http://wiki.osdev.org/Task_State_Segment

Task State Segment - OSDev Wiki

13

25.02.2015 Task State Segment - OSDev Wiki
0x48 reserved ES

0x4C reserved CS
0x50 | reserved SS
0x54 reserved DS
0x58 reserved FS
0x5C reserved GS
0x60 reserved LDTR
0x64 IOPB offset | reserved

TSS in software multitasking

For each CPU which executes processes possibly wanting to do system calls via interrupts, one TSS is
required. The only interesting fields are SSO and ESP0. Whenever a system call occurs, the CPU gets the
SS0 and ESPO0-value in its TSS and assigns the stack-pointer to it. So one or more kernel-stacks need to
be set up for processes doing system calls. Be aware that a thread's/process' time-slice may end during a
system call, passing control to another thread/process which may as well perform a system call, ending
up in the same stack. Solutions are to create a private kernel-stack for each thread/process and re-assign
esp0 at any task-switch or to disable scheduling during a system-call.

Setting up a TSS is straight-forward. An entry in the Global Descriptor Table is needed (see also the
GDT Tutorial), specifying the TSS' address as "base", TSS' size as "limit", 0x89
(Present|Executable|Accessed) as "access byte" and 0x40 (Size-bit) as "flags". In the TSS itself, the
members "SSO0", "ESP0" and "IOPB offset" are to be set:

=SSO gets the kernel datasegment descriptor (e.g. 0x10 if the third entry in your GDT describes
your kernel's data)

= ESPO gets the value the stack-pointer shall get at a system call

= [OPB may get the value sizeof(TSS) (which is 104) if you don't plan to use this io-bitmap further
(according to mystran in http://forum.osdev.org/viewtopic.php?t=13678)

The actual loading of the TSS must take place in protected mode and after the GDT has been loaded.
The loading is simple as:

mov ax, Ox?? ;The descriptor of the TSS in the GDT (e.g. 0x28 if the si»
1tr ax ;The actual Load

= GDT Tutorial
= System Calls
= Getting to Ring 3

Threads

s Do IneedaTSS?

http://wiki.osdev.org/Task_State_Segment 2/3

25.02.2015 Task State Segment - OSDev Wiki
External Links

= Task State Segment on Wikipedia

Retrieved from "http://wiki.osdev.org/index.php?title=Task State Segment&oldid=11145"
Category: X86 CPU

= This page was last modified on 5 February 2011, at 06:21.
= This page has been accessed 35,910 times.

http://wiki.osdev.org/Task_State_Segment 313

