25.02.2015 Synchronization Primitives - OSDev Wiki

Synchronization Primitives

From OSDev Wiki

All the techniques presented here are basic building blocks to address the problem of process
synchronization. E.g. given programs that are running independently from each other on the same
machine, how can one ensure some properties about what combination of operations are allowed and
what combinations are not.

Among other examples of real-world problems, we're looking for technique that can grant:

= Mutual exclusion of processes: a portion of code cannot be executing by two process
simultaneously.

= Rendezvous: one process must not perform one operation (e.g. generating a summary) before
other processes have completed their operations.

= Shared readers/Single writer approach of resource locking: many process may be reading a table
at the same time, but only one can write at a time and it should prevent readers to access the table
until the table has returned to a consistent state.

Note: A good synchronization implementation should not only guarantee correctness, but also
fairness (all process have equal chance to get the access) and non-starvation (any waiting
process will eventually have the resource).

Contents

1 Semaphores
2 Mutexes
3 Spinlocks
4 See Also
= 4.1 Threads

Semaphores

Semaphores are one of the oldest and most widely used methods of ensuring Mutual Exclusion between
two or more processes. A semaphore is a special integer variable which is (usually) initialized to 1, and
can only altered by a pair of functions. Each of these functions, historically called p and v (from the
Dutch words proberen, to try, and verhogen, to increment), must be an Atomic operation. Each
semaphore has an associated queue for processes waiting on the resource it guards.

= The function p, also called wait() (or test()), decrements the value of the semaphore, and if the
semaphore is negative, puts the process on the waiting queue until the semaphore is released by
the process holding it.

= The function v, also called signal() (or release()), increments the semaphore and, if it is still
negative, indicates to the scheduler to wake the next waiting process in the queue.

http://wiki.osdev.org/Synchronization_Primitives

13



25.02.2015 Synchronization Primitives - OSDev Wiki

Note that a general semaphore can do much more than just guaranteeing mutual exclusion. Some FIFO
queue (single reader and single writer) can for instance be implemented by using one semaphore
counting "how many messages are available" and another one counting "how many free slots are
available"

Message queue[N];

Semaphore slots=new Semaphore(N);
Semaphore messages=new Semaphore(9);
int last _read=0, last written=0;

Message get() {
Message m;
messages.wait();
m=queue[last_read]; last_read=(last_read+1)%N;
slots.signal();
m;

}

void put(Message m) {
slots.wait();
queue[last_written]=m; last_written=(last_written+1)%N;
messages.signal();

_________________________________________________________________________________________________________________

Mutexes

A variant on this, called a binary semaphore uses a boolean value instead of an integer. In that case, p
tests the value of the semaphore, and if it is true, sets it to false, and if false, waits. The binary v function
checks the waiting queue, and if it is empty, set the semaphore to true; otherwise, it indicates to the
scheduler to wake the next queued process.

In either form, it is important that a process release a semaphore once it has finished using the resource it
guards, otherwise the resource could be left inaccessible.

Note that while "semaphore" is a globally-unique semantic items, "mutex" is a fuzzy name and system
designers tends to have "their own mutex" which may look more like a spinlock or like a binary
semaphore or like a general semaphore...

Spinlocks

Spinlocks try to address the same problem of Mutual Exclusion, but without relying on a scheduler
infrastructure to make the process sleep if the resource is busy. Instead, a spinlock will keep checking
the value until it has changed and usually relies on some atomic test_and_set instruction on the CPU to
perform its task (See Intel Manuals
(http://developer.intel.com/design/pentium4/manuals/index _new.htm) to see how xchg can be used to
mimmic test_and_set virtual operation).

While poorly used spinlocks will lead to severe performance penalty in single-cpu systems, wise use on
multi-cpu may achieve higher throughput.

http://wiki.osdev.org/Synchronization_Primitives 2/3



25.02.2015 Synchronization Primitives - OSDev Wiki

If you need more information on spinlocks, you're suggested to walk through these documents:

= Spinlocks 1 (http://osdev.berlios.de/spinlock partl.html)
= Spinlocks 2 (http://osdev.berlios.de/spinlock part2.html)
= Spinlocks 3 (http://osdev.berlios.de/spinlock part3.html)

*Note for IA-32 programmers*: If you consider to use spinlocks, be aware that the P4 / Xeon
CPUs will falsely detect a possible memory order violation as the spinloop finishes, resulting in an
large additional performance penalty. Place a PAUSE instruction into the spinlock to avoid this
undesirable behavior. Refer to the Intel Manuals
(http://developer.intel.com/design/pentium4/manuals/index_new.htm) for more information.

See Also

Threads

Userland only Semaphores
Spinlocks that disable interrupts
SMP compatibility

Mutex Implementation

Mutexs, Spinlocks and all that jazz
Spinlocks & Semaphores

Retrieved from "http://wiki.osdev.org/index.php?title=Synchronization Primitives&oldid=12886"
Categories: IPC | Synchronization

= This page was last modified on 2 March 2012, at 07:04.
= This page has been accessed 32,984 times.

http://wiki.osdev.org/Synchronization_Primitives 313



