25.02.2015 Printing To Screen - OSDev Wiki

Printing To Screen

From OSDev Wiki

Contents

= | Basics

2 Printing Strings

3 Printing Integers

4 Troubleshooting
= 4.1 Nothing is Displayed
= 4.2 Printing a Character
= 4.3 Missing Strings

5 See Also
= 5.1 Text Mode
= 5.2 GUI

Basics

Assuming that you are in protected mode and not using the BIOS to write text to screen, you will have
write directly to "video" memory.

This is quite easy. The text screen video memory for colour monitors resides at exBgeee, and for
monochrome monitors it is at address @xBeeee (see Detecting Colour and Monochrome Monitors for
more information).

Text mode memory takes two bytes for every "character" on screen. One is the ASCII code byte, the
other the attribute byte. so the text "HeLlo" would be stored as:

10x000b8000: 'H'

H', colour_for H '
10x000b8002: 'e', colour_for_e :
1©Xx000b8004: ‘L', colour_for_L
'0x000b8006: '1', colour_for_1 '

o', colour_for_o ,

10x000b8008: 'o'

...

The attribute byte carries the foreground colour in its lowest 4 bits and the background color in its
highest 3 bits. The interpretation of bit #7 depends on how you (or the BIOS) configured the hardware
(see VGA Resources for additional info).

For instance, using exee as attribute byte means black-on-black (you'll see nothing). exe7 is lightgrey-
on-black (DOS default), ex1F is white-on-blue (Win9x's blue-screen-of-death), ex2a is for green-
monochrome nostalgics.

For colour video cards, you have 16kb of text video memory to use. Since 80x25 mode does not use all
16kb (80 x 25 x 2, 4000 bytes per screen), you have 8 display pages to use.

When you print to any other page than 0, it will not appear on screen until that page is enabled or copied
into the page 0 memory space.

http://wiki.osdev.org/Printing_To_Screen 1/4

25.02.2015 Printing To Screen - OSDev Wiki

Printing Strings

If you have a pointer to video memory and want to write a string, here is how you might do it;

// note this example will always write to the top
// Line of the screen
void write_string(int colour, const char *string)

{ E
volatile char *video = (volatile char*)0xB8000; i

(*string '= 0) !

(|
*video++ = *string++;
*video++ = colour; 5

} E

) |

This simply cycles through each character in the string, and copies it to the appropriate place in video
memory.

For a more advanced print function, you need to store variables for x and y, as the display controller will
not print a newline. This involves a switch statement or similar construct. You also have to test for x>80
or y>25 and in the case of x>80 setting x to 0 and incrementing y, or in the case of y>25 scrolling.

Printing Integers

Just like in any environment, you repeatedly divide the value by the base, the remainder of the division
giving you the least significant digit of the value.

For example, since 1234 =4 +3* 10+ 2 * 100 + 1* 1000, if you repeatedly divide "1234" by ten and
use the result of the division, you get the digits:

...

51234 = 123*%10 + 4
123 = 12%10 + 3
12 = 1%10 + 2

1 =1 :
As this algorithm retrieves the digits in the "wrong" order (last-to-first), you have to either work
recursively, or invert the sequence of digits afterwards. If you know the numerical value of number % 10,

you simply have to add this to the character '0' to have the correct character (e.g. '0'+4 =="'4")

Here is an example implementation of the itoa() function (which is not standard, but provided by many
libraries):

char * itoa(int value, char * str, int base)
{

char * rc;

char * ptr;

char * low;

// Check for supported base.

http://wiki.osdev.org/Printing_To_Screen 2/4

25.02.2015 Printing To Screen - OSDev Wiki
(base < 2 || base > 36)

{
*str = "\0';
str;
}
rc = ptr = str;
// Set '-' for negative decimals.
(value < @ && base == 10)
{
*ptr++ = -1
}
// Remember where the numbers start.
low = ptr;

// The actual conversion.

{
// Modulo 1is negative for negative value. This trick makes abs()
*ptr++ = "zyxwvutsrgponmlkjihgfedcba9876543210123456789abcdefghi-
value /= base;

} (value);

// Terminating the string.

*ptr-- = "\0';

// Invert the numbers.
(low < ptr)

{
char tmp = *low;
*low++ = *ptr;
*ptr-- = tmp;
}
rc;

And here is a shorter one (http://www.strudel.org.uk/itoa/)

Troubleshooting
Nothing is Displayed

Keep in mind that this way of writing to video memory will only work if the screen has been correctly
set up for 80x25 video mode (which is mode 03). You can do this either by initializing every VGA
register manually, or by calling the Set Video Mode service of the BIOS Int10h while you're still in real
mode (in your bootsector, for instance). Most BIOS's do that initialization for you, but some other
(mainly on laptops) do not. Check out Ralf Brown's Interrupt List for details. Note also that some modes
that are reported as "both text & graphic" by mode lists are actually graphic modes with BIOS functions
that plot fonts when you call char/message output through Int10h (which means you'll end up with plain
graphic mode once in Protected Mode).

(GRUB does this setup for you.)

http://wiki.osdev.org/Printing_To_Screen 3/4

25.02.2015 Printing To Screen - OSDev Wiki

Another common mistake, e.g. in numerous tutorials spread across the net, is to link the .text section of

your kernel/OS to the wrong memory address. If you don't have memory management in place yet,
make sure you're using physical memory locations in the linker script.

Printing a Character

While in Protected Mode, try a simple command like:

i// C

¥ ((int*)0xb800e)=0x07690748;
'// NASM

mov [0xb8000], Ox07690748

/// GAS
movl $0x07690748,0xb8000

which should display 'Hi' in grey-on-black on top of your screen. If this does not work, check your
paging / segmentation setup correctly maps your assumed video memory address to 0xB8000 (or
0xB0000).

Missing Strings

Sometimes printing individual characters works, but printing strings fails. This is usually due to the

.rodata section missing in the linker script. The GCC option -fwritable-strings is a substitute
workaround, but the real solution is to add .rodata to the script.

See Also

Text Mode
m Text Ul
GUI

= GUI

Retrieved from "http://wiki.osdev.org/index.php?title=Printing To_Screen&oldid=17401"
Category: Video

= This page was last modified on 1 January 2015, at 08:18.
= This page has been accessed 62,678 times.

http://wiki.osdev.org/Printing_To_Screen

44

