25.02.2015 Paging - OSDev Wiki

Paging

From OSDev Wiki
,i, 1 —
b
CR3 l * | i
; _ -
] N e |
x86 Paging Structure
Contents
= | Overview
= 2 MMU

= 2.1 Overview
= 2.2 Page Directory
= 2.3 Page Table
= 2.3.1 INVLPG
= 2.4 Example
3 Enabling
4 Physical Address Extension
5 Usage
= 5.1 Virtual Address Spaces
= 5.2 Virtual Memory
6 Manipulation
7 Page Faults
= 7.1 Handling
8 Paging Tricks
9 See Also
= 9.1 Articles
= 9.2 External Links

http://wiki.osdev.org/Paging 1/8

25.02.2015 Paging - OSDev Wiki

Overview

32-bit x86 processors support a 4GiB virtual address space and current 64 bit processors support a
256TiB virtual address space (with a theoretical maximum of 16EiB). Paging is a system which allows
each process to see the full virtual address space, without actually requiring the full amount of physical
RAM to be physically installed. In fact, current implementations of x86-64 has a current physical RAM
limit of 1TiB and a theoretical limit of 4PiB of physical RAM.

In addition to this, paging introduces the benefit of page-level protection. In this system, user-level
processes can only see and modify data which is paged in to their own address space, providing
hardware isolation. System pages are also protected from user processes. On the x86-64 architecture,
page-level protection now completely supersedes Segmentation as the memory protection mechanism.
On the TA32 architecture, both paging and segmentation exist, but segmentation is now considered
'legacy'.

Once an Operating System has paging, it can also make use of other benefits and workarounds, such as
linear framebuffer simulation for memory-mapped 10 and paging out to disk, where disk storage space
is used to free up physical RAM.

MMU

Paging is achieved through the use of the MMU (temporary: article 1, article 2). The MMU is a unit that
transforms virtual addresses into physical addresses based on the current page table. This section focuses
on the x86 MMU.

Overview

On the x86, the MMU maps memory through a series of tables, two to be exact. They are the paging
directory, and the paging table.

Both tables contain 1024 4byte entries, making them each 4kb. In the page directory, each entry points
to a page table. In the page table, each entry points to a physical address that is then mapped to the
virtual address found by calculating the offset within the directory and the offset within the table. This
can be done as the entire table system represents a linear 4gb virtual memory map.

Page Directory

The topmost paging structure is the page directory. It is essentially an array of page directory entries that
take the following form.

Note: With 4mb pages, bits 21 through 12 are Reserved!

The page table address field represents the physical address of the page table that manages the four
megabytes at that point. Please note that it is very important that this address be 4 KiB aligned. This is
needed, due to the fact that the last bits of the 32-bit value are overwritten by access bits and such.

= S, or 'Page Size' stores the page size for that specific entry. If the bit is set, then pages are 4 MiB
in size. Otherwise, they are 4 KiB. Please note that for 4 MiB pages PSE have to be enabled.

= A, or 'Accessed' is used to discover whether a page has been read or written to. If it has, then the
bit is set, otherwise, it is not. Note that, this bit will not be cleared by the CPU, so that burden falls
on the OS (if it needs this bit at all).

http://wiki.osdev.org/Paging 2/8

25.02.2015

Paging - OSDev

Wiki

= D, is the 'Cache Disable' bit. If the bit is set, the page will not be cached. Otherwise, it will be.
= W, the controls "Write-Through' abilities of the page. If the bit is set, write-through caching is
enabled. If not, then write-back is enabled instead.
= U, the 'User\Supervisor' bit, controls access to the page based on privilege level. If the bit is set,
then the page may be accessed by all; if the bit is not set, however, only the supervisor can access
it. For a page directory entry, the user bit controls access to all the pages referenced by the page
directory entry. Therefore if you wish to make a page a user page, you must set the user bit in the
relevant page directory entry as well as the page table entry.
» R, the 'Read/Write' permissions flag. If the bit is set, the page is read/write. Otherwise when it is

not set, the page is read-
only. The WP bit in CRO
determines if this is only
applied to userland,
always giving the kernel
write access (the default)
or both userland and the
kernel (see Intel Manuals
3A 2-20).

= P, or 'Present'. If the bit is
set, the page is actually in
physical memory at the
moment. For example,
when a page is swapped
out, it is not in physical
memory and therefore not
'"Present'. If a page is
called, but not present, a

page fault will occur, and the OS should handle it. (See below.)

Page Table

31

Page Directory Entry

11 9 0

Page Table 4-kb aligned Address

Avail .|G]S|0|AID

G - Ignored

S - Page Size (0 for 4kb)
A - Accessed
O - Cache Disabled

W - Write Through
L - User\Supervisor
R - Read\Write

P - Present

A Page Directory Entry

In each page table, as it is, there are also 1024 entries. These are called page table entries, and are very

similar to page directory entries.

Page Table Entry

31 11 9 0
Physical Page Address Avail.JG|0|D|A CIW UIR|P
G - Global
D - Dirty
A - Accessed
C - Cache Disabled
W= Write Throuagh
U - User\Supervisor
R - Read\Write
P - Present
A Page Table Entry

the page global enable bit in CR4 must be set to enable this feature.

http://wiki.osdev.org/Paging

Note: Only explanations of the
bits unique to the page table are
below.

The first item, is once again, a
4kb aligned physical address.
Unlike previously, however, the
address is not that of a page
table, but instead a 4kb block of
physical memory that is then
mapped to that location in the
page table and directory.

The Global, or 'G' above, flag,
if set, prevents the TLB from
updating the address in it's
cache if CR3 is reset. Note, that

3/8

25.02.2015 Paging - OSDev Wiki

If the Dirty flag ('D') is set, then the page has been written to. This flag is not updated by the CPU, and
once set will not unset itself.

The 'C' bit is 'D' bit above.
INVLPG

INVLPG is an instruction available since the 486 that invalidates a single page table entry in the TLB.
Intel notes that this instruction may be implemented differently on future processes, but that this
alternate behavior must be explicitly enabled. INVLPG modifies no flags.

NASM example:

static inline void __native_flush_tlb_single(unsigned long addr)

{
asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
}
Example

Say I loaded my kernel to 0x100000. However, I want it mapped to 0xc0000000. After loading my
kernel, I initiate paging, and set up the appropriate tables. (See Higher Half Kernel) After Identity
Paging the first megabyte, I start to create my second table (ie. at entry #768 in my directory.) to map
0x100000 to 0xc0000000. My code could be like:

mov eax, 0Ox0
mov ebx, 0x100000
.fill table:
mov ecx, ebx
or ecx, 3
mov [table 768+eax*4], ecx
add ebx, 4096

inc eax
cmp eax, 1024
je .end
jmp .fill table
end
Enabling

http://wiki.osdev.org/Paging

-1

-4

4/8

25.02.2015 Paging - OSDev Wiki

Enabling paging is actually very simple. All that is needed is to load CR3 with the address of the page
directory and to set the paging bit of CRO.

mov eax, [page_directory]
mov cr3, eax

mov eax, cro
or eax, ©x80000000
mov cro, eax

mov eax, cr4
or eax, 0Ox00000010
mov cr4, eax

Physical Address Extension

All Intel processors since Pentium Pro (with exception of the Pentium M at 400 Mhz) and all AMD
since the Athlon series implement the Physical Address Extension (PAE). This feature allows you to
access up to 64 GB (2"36) of RAM. You can check for this feature using CPUID. Once checked, you
can activate this feature by setting bit 5 in CR4. Once active, the CR3 register points to a table of 4 64bit
entries, each one pointing to a page directory made of 4096 bytes (like in normal paging), divided into
512 64bit entries, each pointing to a 4096 byte page table, divided into 512 64bit page entries.

Usage
Due to the simplicity in the design of paging, it has many uses.
Virtual Address Spaces

In a paged system, each process may execute in its own 4gb area of memory, without any chance of
effecting any other process's memory, or the kernel's.

[Physical Memory| [Process A | [Process B

@ex|H E L L (Page Table] [Virtual Memory | | |[[Page Table| [Virtual Memaory |
R !

g;iULgﬂ 00x|00 | |@ex[H E L L 00x (03 | |e@x|H A V E

a3x|H A V E Blx |02 8lx|0 WO Alx |05 Blx LOT

oax| Fun |lle2x[er |le2x|r LD ¢ 02x(06 |l@2x[S O F

95" LoT 03x|n.a. || 03x | aapaans 03x |04 @3x| FUN

msx s 0F 04x|n.a. | | 9dx fEd Odx [n.a. | | Bdx | #aaasas

m: : 3 B5x |07 Bsx|; -) B5x |07 @5x|; -)

paging illustrated: two process with different views of the same physical memory

Virtual Memory

http://wiki.osdev.org/Paging 5/8

25.02.2015 Paging - OSDev Wiki

Because paging allows for the dynamic handling of unallocated page tables, an OS can swap entire
pages, not in current use, to the hard drive where they can wait until they are called. In the mean time,
however, the physical memory that they were using can be used elsewhere. In this way, the OS can
manipulate the system so that programs actually seem to have more RAM than there actually is.

More...

Manipulation

The CR3 value, that is, the value containing the address of the page directory, is in physical form. Once,
then, the computer is in paging mode, only recognizing those virtual addresses mapped into the paging
tables, how can the tables be edited and dynamically changed?

Many prefer to map the last PDE to itself. The page directory will look like a page table to the system.
To get the physical address of any virtual address in the range 0x00000000-0xFFFFFO000 is then just a
matter of:

void * get_physaddr(void * virtualaddr)
{

(unsigned long)virtualaddr >> 22;
(unsigned long)virtualaddr >> 12 & Ox03FF;

unsigned long pdindex
unsigned long ptindex

unsigned long * pd = (unsigned long *)OxFFFFF000;
// Here you need to check whether the PD entry 1is present.

unsigned long * pt = ((unsigned long *)OxFFC00000) + (0x400 * pdinde>
// Here you need to check whether the PT entry 1is present.

(void *)((pt[ptindex] & ~BxFFF) + ((unsigned long)virtualaddr

void map_page(void * physaddr, void * virtualaddr, unsigned int flags)

{
// Make sure that both addresses are page-aligned.

(unsigned long)virtualaddr >> 22;
(unsigned long)virtualaddr >> 12 & Ox03FF;

unsigned long pdindex
unsigned long ptindex

unsigned long * pd = (unsigned long *)OxFFFFF000;

// Here you need to check whether the PD entry 1is present.

// When it 1s not present, you need to create a new empty PT and
// adjust the PDE accordingly.

unsigned long * pt = ((unsigned long *)OxFFC00000Q) + (0x400 * pdinde>
// Here you need to check whether the PT entry 1is present.
// When it 1is, then there 1is already a mapping present. What do you c

http://wiki.osdev.org/Paging 6/8

25.02.2015 Paging - OSDev Wiki

pt[ptindex] = ((unsigned long)physaddr) | (flags & OxFFF) | exe1l; //

// Now you need to flush the entry in the TLB
// or you might not notice the change.

Unmapping an entry is essentially the same as above, but instead of assigning the pt[ptindex] a value,
you set it to 0x00000000 (i.e. not present). When the entire page table is empty, you may want to
remove it and mark the page directory entry 'not present'. Of course you don't need the 'flags' or
'physaddr' for unmapping.

Page Faults

A page fault exception is caused when a process is seeking to access an area of virtual memory that is
not mapped to any physical memory, when a write is attempted on a read-only page, when accessing a
PTE or PDE with the reserved bit or when permissions are inadequate.

Handling

The CPU pushes an error code on the stack before firing a page fault exception. The error code must be
analyzed by the exception handler to determine how to handle the exception. The bottom 3 bits of the
exception code are the only ones used, bits 3-31 are reserved.

:Bit @ (P) is the Present flag. i
Bit 1 (R/W) is the Read/Write flag. !
Bit 2 (U/S) is the User/Supervisor flag. !

WUS RW P - Description

1

|
i@ @ 0 - Supervisory process tried to read a non-present page entry i
©® 0 1 - Supervisory process tried to read a page and caused a protection fault '
© 1 0 - Supervisory process tried to write to a non-present page entry '
© 1 1 - Supervisory process tried to write a page and caused a protection fault :
1 @ @ - User process tried to read a non-present page entry :
1 @ 1 - User process tried to read a page and caused a protection fault |
El 1 © - User process tried to write to a non-present page entry i
1 1 1 - User process tried to write a page and caused a protection fault '

1

...

When the CPU fires a page-not-present exception the CR2 register is populated with the linear address
that caused the exception. The upper 10 bits specify the page directory entry (PDE) and the middle 10
bits specify the page table entry (PTE). First check the PDE and see if it's present bit is set, if not setup a
page table and point the PDE to the base address of the page table, set the present bit and iretd. If the
PDE is present then the present bit of the PTE will be cleared. You'll need to map some physical
memory to the page table, set the present bit and then iretd to continue processing.

Paging Tricks

http://wiki.osdev.org/Paging 7/8

25.02.2015 Paging - OSDev Wiki

The processor always fires a page fault exception when the present bit is cleared in the PDE or PTE
regardless of the address. This means the contents of the PTE or PDE can be used to indicate a location
of the page saved on mass storage and to quickly load it. When a page gets swapped to disk, use these
entries to identify the location in the paging file where they can be quickly loaded from then set the
present bit to 0.

See Also

Articles

= [dentity Paging

= Page Frame Allocation
= Setting Up Paging

= Page Tables

External Links

= INVLPG thread (http://forum.osdev.org/viewtopic.php?f=1&t=18222)

Retrieved from "http://wiki.osdev.org/index.php?title=Paging&oldid=17422"
Categories: Memory management | Security

= This page was last modified on 1 January 2015, at 13:33.
= This page has been accessed 159,596 times.

http://wiki.osdev.org/Paging

8/8

