25.02.2015 Page Frame Allocation - OSDev Wiki

Page Frame Allocation

From OSDev Wiki

Contents

= | Physical Memory Allocators
1.1 Bitmap
1.2 Stack/List of pages
1.3 Sized Portion Scheme
1.4 Buddy Allocation System
1.5 Hybrid scheme
1.6 Hybrid scheme #2
= 2 Virtual Addresses Allocator

= 2.1 Flat List

= 2.2 Tree-based approach.
= 3 See Also

= 3.1 Articles

= 3.2 Threads

= 3.3 External Links

Physical Memory Allocators

These are the algorithms that will provide you a new page frame when you'll need it. The client of this
algorithm is usually indifferent to which frame is returned, and especially, a request for n frames needn't
to return contiguous frames (unless you are allocating memory for DMA operations like network packet
buffers).

N will be the size of the memory in pages in the following text.
Bitmap

A large array of N/8 bytes is used as a large bit map of the memory usage (that is, bit #1 in byte #n
define the status of page #n*8+1). Setting the state of a given page is fast (O(1)), allocating a page may
take time (O(N)).

= an uint32 t comparison can test up to 32 bits at once and thus speed up allocations
= keeping a pointer to the last allocated bit may improve the performance of the next search
(keeping information about the fact all the previous bytes were searched unsuccessfully)

Stack/List of pages

The address of each available physical frame is stored in a stack-like dynamic structure. Allocating a
page is fast (O(1)), freeing a page too but checking the state of a page is not practical, unless additional
metadata is stored sorted by physical address.

Sized Portion Scheme

http://wiki.osdev.org/Page_Frame_Allocation 1/5

25.02.2015 Page Frame Allocation - OSDev Wiki

You split each area of, say 16kb into (for example) chunks of 1 8kb, and 2 4kb's. Then you hand out
each chunk. By doing this you can find closer fits to exact sizes. That means less waste. So say that you
have an area of 32kb

BKiBE |4KiB4KiBl] BKiB |4KiB4KiB

You can even have 1, 2, even 3 or 4 (or more!) types of layouts for each portion. This way you have
even more sizes to choose from.

Buddy Allocation System

This is the physical memory allocator of Linux kernel. Note that linux has several buddies depending on
whether the memory is suitable for ISA DMA, or is coming from 'high physical memory' or just
'normal'. Each buddy contains k bitmaps, each indicating the availability of 2"i-sized and 2"i aligned
blocks of free pages. Usually, linux uses from 4K to 512K blocks.

...

© 4 8 12 16 20 24 28 32 36

HA# H. . B ool H#o . L L CHHEREEEEE. ... real memory pattern
buddy[@]---> #H#E. #. XX . HEXXXXXXXXHE XX XX 5 free 4K, 5-byte bitmap
buddy[1]---> # # # . # . xx . # . ## . ### # xx 5 free 8K , 20-bits map
buddy[2]---> # # # . # # # # # . 2 free 16K, 10-bits map
buddy[3]---> # # # # # @ free 32K, 5-bits map

A buddy for N pages is about twice the size of a bitmap for the same area, but it allows faster location of
collections of pages. Figure above shows a 4-buddy with free pages/blocks denoted as . and used
pages/blocks denoted as #. When a block contains at least one used sub-block, it is itself marked as used
and sub-blocks that are part of a larger block are also marked as used (x on the figure). Say we want to
allocate a 12-K region on this buddy, we'll lookup the bitmap of free 16K blocks (which says we have
one such starting at page #12 and another starting at page #36). buddy[2]->bit[4] is then set to 'used'.
Now we only want 3 pages out of the 4 we got, so the remaining page is returned to the appropriated
buddy bitmap (e.g. the single pages map). The resulting buddy is

o 4 8 12 16 20 24 28 32 36

, H L L HL B L L JHEEEL L CHEEERERE. ... real memory pattern '
v buddy[@]---> #HE# X HXXEHHE O XXEHHE. XOCGHEHHHHHEXOKC 6 free 4K, 5-byte bitmap |
¢ buddy[1]---> # # # . # . ## . H . HH . HH#H# xx 5 free 8K , 20-bits map
' buddy[2]---> # # # # # # # # # . 1 free 16K, 10-bits map '
' buddy[3]---> # # # # # @ free 32K, 5-bits map !

...

Note that initially, only the largest regions are available, so if buddy[0] is apparently empty, we need to
check buddy[1], then buddy[2] etc. for a free block to be split.

Hybrid scheme
Allocators may be chained so that (for instance) a stack only covers the last operations and that the

'bottom' of the stack is committed to a bitmap (for compact storage). If the stack lacks pages, it can scan
the bitmap to find some (possibly in a background job).

Hybrid scheme #2

http://wiki.osdev.org/Page_Frame_Allocation 2/5

25.02.2015 Page Frame Allocation - OSDev Wiki

Instead of keeping track of just bits representing pages, or just page numbers on a stack, use a big array
of structs to represent the memory. In these page frame structs, store a single link to a next page
(pointer-sized) and a 8-16 bit information block indicating its status. Also include the virtual page
pointer and the TCB to which the page number belongs. Keep pointers to each type of page, to both the
start and the end of their lists. This way, you can easily display information about their content, the
amount of pages for each type available, mix types, allow dynamic cleaning threads, do copy-on-write
fairly easily and keep clear & concise overviews of the pages. It functions as a reverse page mapping
table that lists types of pages too.

For an example implementation see AtlantisOS 0.0.2 or higher.

Virtual Addresses Allocator

Flat List

One straightforward way to manage big areas of addresses space is a linked-list (as depicted below).
Each "free" region is associated with a descriptor giving its size and its base address. When some space
needs to be allocated, the list is scanned for a region being large enough with a "first fit" or "best fit" (or
whatever) algorithm. This was e.g. the way memory was managed by MS-DOS. When memory is
allocated, the suitable entry is either removed (the whole region is allocated) or resized (only a portion
of the region is allocated).

Note that with flat linked-lists, both "is memory at address XXX free" or "where can i get a block of size
YYY" questions may require a complete traversal of the list to get answered. If virtual memory gets
fragmented and the list gets longer, that may become an issue. "Is memory at address XXX free?" is
mainly used to merge two free zone into a new (bigger) one when a block is released, and it is easier to
deal with if the list is kept ordered by growing addresses.

Prev | address space
Start p" “\ —_—
Size— free) free
Next ~,_ | space

':I:Prev used
Start ———

Size— free
Next ", space ™ free
1 —
Prewv
Start - 1 Ll
Size— free = free
MNext \ space
| A
Prew used
Start +— - ———
Size free
Mext ™, space [—™ free
|

Tree-based approach.

Since it is frequent that the list is searched for a given address or a given size, it may be interesting to
use more efficient data structures. One of them that still keeps the ability of traversing the whole list is
the AVL Tree. Each "node" in the AVL tree will describe a memory region and has pointer to the

http://wiki.osdev.org/Page_Frame_Allocation 3/5

25.02.2015 Page Frame Allocation - OSDev Wiki

subtree of lower nodes and to the subtree of higher nodes.

by-address ardering by-size ordering

While insertion/deletion in such a balanced tree requires more complex operations than linked list
manipulation, searching the tree is usually achieved with O(log2(N)) rather than O(N) for linked lists --
that is, if you have 1000 entries, it requires 1000 iterations to scan the list against 10 iterations to find a
given interval in the tree.

Linux has used AVL trees for virtual addresses management for quite a while. Note however that it uses
it for regions (like what you find in /proc/xxxx/maps), not for a malloc-like interface.

See Also

Articles

= Memory Allocation
= Memory management
= Writing a memory manager - a tutorial

Threads

Allocating memory for an allocator without an allocator
A bitmap based allocation technique

Ways to keep track of allocated RAM

Questions about Memory Allocation

Memory Management

Memory Management to the X'th

MM Questions

(about)Tim Robinson Memory Management Tutorial #1
Managing used/free pages

Malloc, etc. (tute by curufir)

Physical MM (by Freanan)

Concepts and key points on alternative memory management schemes

External Links
= mystran's Basic VMM for Dummies (cached)
(http://replay.web.archive.org/20081206102136/http://www.cs.hut.fi/~tvoipio/memtutor.html)

= Page replacement algorithm on Wikipedia

http://wiki.osdev.org/Page_Frame_Allocation 4/5

25.02.2015 Page Frame Allocation - OSDev Wiki

Retrieved from "http://wiki.osdev.org/index.php?title=Page Frame Allocation&oldid=17408"
Categories: Common Algorithms = Memory management

= This page was last modified on 1 January 2015, at 12:56.
= This page has been accessed 75,073 times.

http://wiki.osdev.org/Page_Frame_Allocation

5/5

