25.02.2015

"8042" PS/2 Controller - OSDev Wiki

"8042" PS/2 Controller

From OSDev Wiki

Contents

1 Overview
2 History
= 2.1 Translation
3 USB Legacy Support
4 Buffer Naming Perspective
5 PS/2 Controller IO Ports
= 5.1 Data Port
= 5.2 Status Register
= 5.3 Command Register
6 PS/2 Controller Commands
= 6.1 PS/2 Controller Configuration Byte
= 6.2 PS/2 Controller Output Port
7 Initialising the PS/2 Controller
= 7.1 Step 1: Initialise USB Controllers
= 7.2 Step 2: Determine if the PS/2 Controller Exists
= 7.3 Step 3: Disable Devices
7.4 Step 4: Flush The Output Buffer
7.5 Step 5: Set the Controller Configuration Byte
7.6 Step 6: Perform Controller Self Test
7.7 Step 7: Determine If There Are 2 Channels
7.8 Step 8: Perform Interface Tests
7.9 Step 9: Enable Devices
= 7.10 Step 10: Reset Devices
8 Detecting PS/2 Device Types
9 Hot Plug PS/2 Devices
10 Sending Bytes To Device/s
= 10.1 First PS/2 Port
= 10.2 Second PS/2 Port
11 Recieving Bytes From Device/s
= 11.1 Polling
= 11.2 Interrupts
12 CPU Reset
13 See Also
= 13.1 Threads
= 13.2 External Links

Overview

The PS/2 Controller (often called a "Keyboard controller") is located on the mainboard. In the early days

the controller was a single chip (8042). As of today it is part of the Advanced Integrated Peripheral.

http://wiki.osdev.org/%228042%22_PS/2_Controller

1/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

The name is misleading because the controller does more than controlling communication with PS/2
devices.

PIT
CPU Reset

Y Port[0x60] |

y _ Port[0x64] PS/2
CPU =-———"» KBC

first PS/2
_ connector
IRG

second P5/2

connector
IRQ

Overview of the PS/2-Controller

History

The original uni-directional, single channel IBM PC and PC-XT keyboard interface was controlled by a
multi purpose PPI (Intel 8048, Programmable peripheral interface; also used to control other functions,
like sound and parity error). The XT controller is 100% obsolete and won't be discussed further in this

page.

With the PC-AT, IBM introduced new keyboards (with a new bi-directional protocol) and a new
keyboard controller (Intel 8042). The old PPI was not part of the mother board any more.

3. Timer e
PIT
CPU Reset
Y Port[0x60]

cpy oo,

I{BG

5pin DIN
connector
IRQ

Overview of the AT-Controller

http://wiki.osdev.org/%228042%22_PS/2_Controller 2/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

The 8042 was a powerful microcontroller. To reduce costs, some of the general purpose input/output
capabilities of the AT controller was used to control various functions unrelated to the keyboard,
including :

= System Reset
= The A20-Gate

With the introduction of the PS/2 series, the main change to the keyboard controller subsystem was its
expansion to control both a keyboard and a mouse. Previously PC and compatible mice were connected
to different physical interfaces, including Serial Ports. The AT keyboard controller and its "clones" were
not capable of interfacing the new PS/2 mouse. Eventually (around the late 80486 and early Pentium
time frame) PS/2 style mice became popular, and "PC-compatible" controllers have supported dual
channels from then on (nominally one keyboard and one mouse).

For the keyboard functions proper, the PS2 and AT controllers are very similar. The adjunction of a
second channel (for the mouse) has forced however to redefine a few status and control bits.

Translation

The original IBM-PC keyboards (using the old XT interface) used "scan code set 1". The new AT
keyboards generated different scan codes, or "scan code set 2". This change would have created
compatibility problems for software that was expecting different scan codes from the keyboard. To
avoid the compatibility problem, the keyboard controller supports a translation mode. If translation is
enabled the controller will translate "scan code set 2" into "scan code set 1".

Whenever this translation is enabled (and by default, it is) there is no way to reverse it in software. For
example, if you receive the byte 0xB5 from the controller, then you can't know if the original data (sent
to the controller by the device) was the byte 0xB5; or if it was the two bytes 0xFO0, 0x33; or if it was the
two bytes 0xFO0, 0xB3.

For software to actually use "scan code set 2" (or the even newer, rarely used, "scan code set 3"), or to
allow different types of devices to be used in the keyboard port, you need to disable this translation to
avoid having the data from the device mangled.

USB Legacy Support

By modern standards you will find many PCs bundled with USB input devices. Some PCs may not even
have PS/2 connectors at all. To remain compatible with old software, the mainboard emulates USB
Keyboards and Mice as PS/2 devices. This is called USB Legacy Support.

Because the implementation differ by manufacturer and mainboard there are flaws and sometimes even
bugs:

= Some emulation layers also handle the communication with the real PS/2 connectors regardless of
any connected USB device. So maybe not all capabilities of the PS/2 connectors and devices can
be used. For example extended mouse modes needed to use the scroll wheel won't work or the
keyboard only works on the first PS/2 connector and the mouse only on the second connector.

= The SMM BIOS that's providing the PS/2 USB Legacy Support may not support extended
memory techniques or Long Mode and may cause system crashes.

http://wiki.osdev.org/%228042%22_PS/2_Controller 314



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

This USB Legacy Support should be disabled by the OS as soon as the OS initialises the USB
Controller, and this should be done before the OS attempts to initialise the real PS/2 controller.
Otherwise the OS would only be initialising the emulated PS/2 controller and there's a large risk of
problems caused by deficiencies in the firmware's emulation.

Buffer Naming Perspective

The PS/2 controller has two (one byte) buffers for data - one buffer for data received from devices that is
waiting to be read by your OS, and one for data written by your OS that is waiting to be sent to a PS/2
device. Most datasheets for PS/2 controllers are written from the perspective of the PS/2 device and not
from the perspective of software running on the host. Because of this, the names given to these buffers
are the opposite of what you expect: the output buffer contains a device's output data (data waiting to be
read by software), and the input buffer contains a device's input (data that was sent by software).

PS/2 Controller 10 Ports

The PS/2 Controller itself uses 2 10 ports (IO ports 0x60 and 0x64). Like many IO ports, reads and
writes may access completely different internal registers.

Historical note : The PC-XT PPI had used port 0x61 to reset the keyboard interrupt request signal
(among other unrelated functions). Port 0x61 has no keyboard related functions on AT and PS/2
compatibles.

IO Port Access Type Purpose

0x60 Read/Write | Data Port

0x64 Read Status Register

0x64 Write Command Register
Data Port

The Data Port (IO Port 0x60) is used for reading data that was received from a PS/2 device or from the
PS/2 controller itself, and writing data to a PS/2 device or to the PS/2 controller itself.

Status Register

The Status Register contains various flags that indicate the state of the PS/2 controller. The meanings for
each bit are:

Bit Meaning
Output buffer status (0 = empty, 1 = full)

(must be set before attempting to read data from 1O port 0x60)

http://wiki.osdev.org/%228042%22_PS/2_Controller 4/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

Input buffer status (0 = empty, 1 = full)

(must be clear before attempting to write data to 1O port 0x60 or 1O port 0x64)

System Flag

> | Meant to be cleared on reset and set by firmware (via. PS/2 Controller Configuration Byte) if the
system passes self tests (POST)

Command/data (0 = data written to input buffer is data for PS/2 device, 1 = data written to input

3 buffer is data for PS/2 controller command)
Unknown (chipset specific)

4 May be "keyboard lock" (more likely unused on modern systems)
Unknown (chipset specific)

5

May be "receive time-out" or "second PS/2 port output buffer full"

6 | Time-out error (0 = no error, 1 = time-out error)

7 | Parity error (0 =no error, 1 = parity error)

Command Register

The Command Port (IO Port 0x64) is used for sending commands to the PS/2 Controller (not to PS/2
devices).

PS/2 Controller Commands

The PS/2 Controller accepts some commands and performs them. These commands should not be
confused with bytes sent to a PS/2 device (e.g. keyboard, mouse).

To send a command to the controller, simply write the command byte to IO port 0x64. If there is a "next
byte" (the command is 2 bytes) then the next byte needs to be written to IO Port 0x60 after making sure
that the controller is ready for it (by making sure bit 1 of the Status Register is clear). If there is a
response byte, then the response byte needs to be read from IO Port 0x60 after making sure that it has
arrived (by making sure bit 0 of the Status Register is set).

Command .
Byte Meaning Response Byte
0x20 Read "byte 0" from internal RAM Controller Configuration Byte (see

below)

Unknown (only the first byte of

0x21 to Read "byte N" from internal RAM (where 'N' is internal RAM has a standard

http://wiki.osdev.org/%228042%22_PS/2_Controller 5114



25.02.2015
0x3F

0x60

0x61 to
0x7F

0xA7

0xAg

0xA9

OxAA

0xAB

0xAC
0xAD
0xAE

0xCO0

0xCl1
0xC2

0xDO0

0xD1

0xD2

"8042" PS/2 Controller - OSDev Wiki

the command byte & 0x1F)

Write next byte to "byte 0" of internal RAM
(Controller Configuration Byte, see below)

Write next byte to "byte N" of internal RAM
(where 'N' is the command byte & 0x1F)

Disable second PS/2 port (only if 2 PS/2 ports
supported)

Enable second PS/2 port (only if 2 PS/2 ports
supported)

Test second PS/2 port (only if 2 PS/2 ports
supported)

Test PS/2 Controller

Test first PS/2 port

Diagnostic dump (real all bytes of internal RAM)
Disable first PS/2 port
Enable first PS/2 port

Read controller input port

Copy bits 0 to 3 of input port to status bits 4 to 7
Copy bits 4 to 7 of input port to status bits 4 to 7

Read Controller Output Port

Write next byte to Controller Output Port (see
below)

Note: Check if output buffer is empty first

Write next byte to first PS/2 port output buffer
(only if 2 PS/2 ports supported)

(makes it look like the byte written was received
from the first PS/2 port)

http://wiki.osdev.org/%228042%22_PS/2_Controller

purpose)

None

None

None

None
0x00 test passed

0x01 clock line stuck low 0x02 clock
line stuck high 0x03 data line stuck
low 0x04 data line stuck high

0x55 test passed

0xFC test failed

0x00 test passed

0x01 clock line stuck low 0x02 clock
line stuck high 0x03 data line stuck
low 0x04 data line stuck high

Unknown
None
None

Unknown (none of these bits have a
standard/defined purpose)

None

None

Controller Output Port (see below)

None

None

6/14



25.02.2015

0xD3

0xD4

0xFO to
OxFF

"8042" PS/2 Controller - OSDev Wiki

Write next byte to second PS/2 port output buffer
(only if 2 PS/2 ports supported)

) ) ) ) None
(makes it look like the byte written was received

from the second PS/2 port)

Write next byte to second PS/2 port input buffer

(only if 2 PS/2 ports supported)
None

(sends next byte to the second PS/2 port)

Pulse output line low for 6 ms. Bits 0 to 3 are used
as a mask (0 = pulse line, 1 = don't pulse line) and
correspond to 4 different output lines.

Note: Bit 0 corresponds to the "reset" line. The None

other output lines don't have a standard/defined
purpose.

Note: Command bytes not listed in the table above should be treated as either "chipset specific" or
"unknown" and shouldn't be issued. Commands bytes that are marked as "only if 2 PS/2 ports
supported" should also be treated as either "chipset specific" or "unknown" if the controller only
supports one PS/2 port.

PS/2 Controller Configuration Byte

Commands 0x20 and 0x60 let you read and write the PS/2 Controller Configuration Byte. This
configuration byte has the following format:

Bit

~N NN AW IND =] O

Meaning

First PS/2 port interrupt (1 = enabled, 0 = disabled)

Second PS/2 port interrupt (1 = enabled, 0 = disabled, only if 2 PS/2 ports supported)
System Flag (1 = system passed POST, 0 = your OS shouldn't be running)

Should be zero

First PS/2 port clock (1 = disabled, 0 = enabled)

Second PS/2 port clock (1 = disabled, 0 = enabled, only if 2 PS/2 ports supported)
First PS/2 port translation (1 = enabled, 0 = disabled)

Must be zero

Note: Bits listed in the table above as "unknown" should be treated as either "chipset specific" or
"unknown". Bits that are marked as "only if 2 PS/2 ports supported" should also be treated as either
"chipset specific" or "unknown" if the controller only supports one PS/2 port.

http://wiki.osdev.org/%228042%22_PS/2_Controller

714



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

PS/2 Controller Output Port

Commands 0xDO0 and 0xD1 let you read and write the PS/2 Controller Output Port. This output port has
the following format:

Bit Meaning
System reset (output)

0 | WARNING always set to '1". You need to pulse the reset line (e.g. using command 0xFE), and
setting this bit to '0' can lock the computer up (""reset forever").

1 | A20 gate (output)

2 | Second PS/2 port clock (output, only if 2 PS/2 ports supported)

3 | Second PS/2 port data (output, only if 2 PS/2 ports supported)

4 | Output buffer full with byte from first PS/2 port (connected to IRQ1)

5 Output buffer full with byte from second PS/2 port (connected to IRQ12, only if 2 PS/2 ports

supported)
6 | First PS/2 port clock (output)
7 | First PS/2 port data (output)

Note: Bits that are marked in the table above as "only if 2 PS/2 ports supported" should be treated as
either "chipset specific" or "unknown" if the controller only supports one PS/2 port.

Initialising the PS/2 Controller

Some people assume the PS/2 controller exists and was configured correctly by firmware. This approach
can work, but isn't very robust and doesn't correctly support "less simple" scenarios. Examples of why
this approach may not work well include:

= Something (e.g. a Boot Manager) left the PS/2 Controller in a dodgy state

= The PS/2 Controller has hardware faults and your OS didn't do any testing

= There's a USB keyboard and a PS/2 mouse, and the BIOS didn't bother initialising the PS/2
controller because it was using USB Legacy Support and not using the mouse

= You want to reliably send data to the second PS/2 device on older hardware and have to know the
second PS/2 port exists (see the warning for "Sending Bytes To The Second PS/2 Port" below).

The following steps are for "comprehensive PS/2 Controller initialisation". It may be excessive for your
purposes, and a more limited version of it may be more suitable. However, it's easy enough to
(selectively) remove steps from the following description.

Step 1: Initialise USB Controllers
This doesn't have anything to do with the PS/2 Controller or PS/2 Devices, however if the system is

using (typically limited/dodgy) USB Legacy Support it will interfere with PS/2 Controller initialisation.
Therefore you need to initialise USB controllers and disable USB Legacy Support beforehand.

http://wiki.osdev.org/%228042%22_PS/2_Controller 8/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki
Step 2: Determine if the PS/2 Controller Exists

Before you touch the PS/2 controller at all, you should determine if it actually exists. On some systems
(e.g. 80x86 Apple machines) it doesn't exist and any attempt to touch it can result in a system crash. The
correct way to do this is is with ACPI. More specifically, check bit 1 (value = 2, the "8042" flag) in the
"IA PC Boot Architecture Flags" field at offset 109 in the Fixed ACPI Description Table (FADT). If this
bit is clear then there is no PS/2 Controller to configure. Otherwise, if the bit is set or the system doesn't
support ACPI (no ACPI tables and no FADT) then there is a PS/2 Controller.

Step 3: Disable Devices

So that any PS/2 devices can't send data at the wrong time and mess up your initialisation; start by
sending a command 0xAD and command 0xA7 to the PS/2 controller. If the controller is a "single
channel" device, it will ignore the "command 0xA7".

Step 4: Flush The Output Buffer

Sometimes (e.g. due to interrupt controller initialisation causing a lost IRQ) data can be stuck in the
PS/2 controller's output buffer. To guard against this, now that the devices are disabled (and can't send
more data to the output buffer) it can be a good idea to flush the controller's output buffer. There's 2
ways to do this - poll bit 0 of the Status Register (while reading from 10 Port 0x60 if/when bit 0
becomes set), or read from 10 Port 0x60 without testing bit 0. Either way should work (as you're
discarding the data and don't care what it was).

Step 5: Set the Controller Configuration Byte

Because some bits of the Controller Configuration Byte are "unknown", this means reading the old value
(command 0x20), changing some bits, then writing the modified value back (command 0x60). You want
to disable all IRQs and disable translation (clear bits 0, 1 and 6).

While you've got the Configuration Byte, test if bit 5 was set. If it was clear then you know it can't be a
"dual channel" PS/2 controller (because the second PS/2 port should be disabled).

Step 6: Perform Controller Self Test

To test the PS/2 controller, send command 0xAA to it. Then wait for its response and check that it
replied with 0x55.

Step 7: Determine If There Are 2 Channels

If you know it's a single channel controller (from Step 5) then skip this step. Otherwise, send a
command 0xAS8 to enable the second PS/2 port and read the Controller Configuration Byte again. Now
bit 5 of the Controller Configuration Byte should be clear - if it's set then you know it can't be a "dual
channel" PS/2 controller (because the second PS/2 port should be enabled). If it is a dual channel device,
send a command 0xA7 to disable the second PS/2 port again.

Step 8: Perform Interface Tests

http://wiki.osdev.org/%228042%22_PS/2_Controller 9/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

This step tests the PS/2 ports. Use command 0xAB to test the first PS/2 port, then check the result. Then
(if it's a "dual channel" controller) use command 0xA9 to test the second PS/2 port, then check the
result.

At this stage, check to see how many PS/2 ports are left. If there aren't any that work you can just give
up (display some errors and terminate the PS/2 Controller driver). Note: If one of the PS/2 ports on a
dual PS/2 controller fails, then you can still keep going and use/support the other PS/2 port.

Step 9: Enable Devices

Enable any PS/2 port that exists and works using command O0XAE (for the first port) and command 0xAS8
(for the second port). If you're using IRQs (recommended), also enable interrupts for any (usable) PS/2
ports in the Controller Configuration Byte (set bit 0 for the first PS/2 port, and/or bit 1 for the second
PS/2 port, then set it with command 0x60).

Step 10: Reset Devices

All PS/2 devices should support the "reset" command (which is a command for the device, and not a
command for the PS/2 Controller). To send the reset, just send the byte OxFF to each (usable) device.
The device/s will respond with OxFA (success) or OxFC (failure), or won't respond at all (no device
present). If your code supports "hot-plug PS/2 devices" (see later), then you can assume each device is
"not present" and let the hot-plug code figure out that the device is present if/when 0xFA or OxFC is
received on a PS/2 port.

Detecting PS/2 Device Types

All PS/2 devices should support the "identify" command and the "disable scanning" command (which
are commands for the device, and not commands for the PS/2 Controller). The device should respond to
the "identify" command by sending a sequence of none, one or two identification bytes. However, if you
just send the "identify" command you can't prevent the response from the "identify" command from
being mixed up with keyboard/mouse data. To fix this problem, you need to send the "disable scanning"
command first. Disabling scanning means that the device ignores the user (e.g. keyboards ignore
keypresses, mice ignore mouse movement and button presses, etc) and won't send data to mess your
device identification code up.

The full sequence is:

= Send the "disable scanning" command OxF5 to the device

Wait for device to send "ACK" back (0xFA)

Send the "identify" command 0xF2 to the device

Wait for device to send "ACK" back (0xFA)

Wait for device to send up to 2 bytes of reply, with a time-out to determine when it's finished (e.g.
in case it only sends 1 byte)

A partial list of responses includes:

Byte/s Device Type

Ancient AT keyboard with translation enabled in the PS/Controller (not possible

None for the second PS/2 port)

http://wiki.osdev.org/%228042%22_PS/2_Controller 10/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

0x00 Standard PS/2 mouse
0x03 Mouse with scroll wheel
0x04 5-button mouse

MF2 keyboard with translation enabled in the PS/Controller (not possible for the

OxAB, 0x41 or second PS/2 port)

0xAB, 0xCl1

0xAB, 0x83 MF?2 keyboard

Note: If anyone sees any other responses please add to the list above!

Once your PS/2 Controller driver knows what types of PS/2 devices are present, it can start suitable
device drivers for those devices. Don't forget that we've left devices in a "scanning disabled" state.

Hot Plug PS/2 Devices

WARNING: PS/2 was never intentionally designed to support hot-plug. Usually it is fine as most PS/2
controllers have reasonably robust 1O lines, however some PS/2 controllers (mostly those in old
chipsets) may potentially be damaged.

Despite the warning, most OSs (Windows, Linux, etc) do support hot-plug PS/2. It is also relied on by
old "mechanical switch" KVMs (which allow the same PS/2 devices to be shared by multiple computers
by effectively disconnecting the device from one computer and connecting it to the next).

When a PS/2 device is removed the PS/2 controller won't know. To work around this, when no data has
been received from the device for some length of time (e.g. 2 seconds), an OS can periodically test for
the presence of the device by sending an "echo" command to the device and checking for a reply. If the
device doesn't respond, then assume the device has been unplugged.

When a PS/2 device is first powered up (e.g. when it is plugged in to a PS/2 port), the device should
perform its Basic Assurance Test and then attempt to send a "BAT completion code". This means that
software (e.g. an OS) can automatically detect when a PS/2 device has been inserted. Note: If a device is
removed and then another device (or the same device) is plugged in quickly enough, the software may
not have had time to detect the removal.

When software detects that a device was plugged in it can determine the type of device (see above). If
the device was the same type as before software can re-configure it so that the device is in the same state
as it was before removal. This means that (for example) someone using an old "mechanical switch"
KVMs doesn't lose state (things like keyboard LEDs, typematic rate, etc) when switching between
computers. If the device is not the same as before or there was no previously connected device, then
software may need to start a new device driver (and terminate the old device driver, if any).

Sending Bytes To Device/s

http://wiki.osdev.org/%228042%22_PS/2_Controller 1114



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

Unfortunately, the PS/2 Controller does not support interrupt driven transmission (e.g. you can't have a
queue of bytes waiting to be sent and then send each byte from inside a "transmitter empty" IRQ
handler). Fortunately very little data needs to be sent to typical PS/2 devices and polling suffices.

First PS/2 Port

To send data to the first PS/2 Port:

= Set up some sort of timer or counter to use as a time-out

= Poll bit 1 of the Status Register ("Input buffer empty/full") until it becomes clear, or until your
time-out expires

= [f the time-out expired, return an error

= Otherwise, write the data to the Data Port (IO port 0x60)

Second PS/2 Port

Sending data to the second PS/2 port is a little more complicated, as you need to send a command to the
PS/2 controller to tell it that you want to talk to the second PS/2 port instead of the first PS/2 port. To
send data to the second PS/2 Port:

= Write the command 0xD4 to IO Port 0x64

= Set up some sort of timer or counter to use as a time-out

» Poll bit 1 of the Status Register ("Input buffer empty/full") until it becomes clear, or until your
time-out expires

= [f the time-out expired, return an error

= Otherwise, write the data to the Data Port (IO port 0x60)

WARNING: If the PS/2 controller is an (older) "single PS/2 device only" controller, if you attempt to
send a byte to the second PS/2 port the controller will ignore the command 0xD4 you send to IO Port
0x64, and therefore the byte you send will actually be sent to the first PS/2 device. This means that (if
you support older hardware) to reliably send data to the second device you have to know that the PS/2
Controller actually does have a second PS/2 port.

Recieving Bytes From Device/s

There are 2 ways to receive bytes from device/s: polling, and using IRQ.
Polling

To poll, wait until bit O of the Status Register becomes set, then read the received byte of data from 1O
Port 0x60.

There are 2 major problems with polling. The first problem is that (like all polling) it wastes a lot of
CPU time for nothing. The second problem is that if the PS/2 controller supports two PS/2 devices
there's no way to reliably determine which device sent the byte that you've received, unless one of them
1s disabled and unable to send data.

Note: if the PS/2 controller uses bit 5 of the Status Register as a "second PS/2 port output buffer full"
flag, you'd still have problems trying to determine which device sent a byte of data you've received
without race conditions. For example, there may be data from the second PS/2 device waiting for you

http://wiki.osdev.org/%228042%22_PS/2_Controller 12/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki

when you check the flag, but before you read from IO Port 0x60 data from the first PS/2 device might
arrive and you might read data from the first PS/2 device when you think you're reading data from the
second PS/2 device. Of course there's also no easy way to know if the PS/2 controller does use bit 5 of
the Status Register as a "second PS/2 port output buffer full" flag.

Interrupts

Using interrupts is actually easy. When IRQ1 occurs you just read from 10 Port 0x60 (there is no need
to check bit 0 in the Status Register first), send the EOI to the interrupt controller and return from the
interrupt handler. You know that the data came from the first PS/2 device because you received an
IRQI.

When IRQ12 occurs you just read from IO Port 0x60 (there is no need to check bit 0 in the Status
Register first), send the EOI to the interrupt controller/s and return from the interrupt handler. You know
that the data came from the second PS/2 device because you received an IRQ12.

Unfortunately there is one problem to worry about. If you send a command to the PS/2 controller that
involves a response, the PS/2 controller will put a "response byte" into the buffer and won't generate any
IRQ (because the byte didn't come from any PS/2 device). In this case you have to poll, and if you have
to poll you can't determine where the byte came from unless all PS/2 devices are disabled. Fortunately
you should never need to send a command to the PS/2 controller itself after initialisation (and you can
disable both PS/2 devices where necessary during initialisation).

CPU Reset

To trigger a CPU Reset, regardless of what state the CPU is currently in, write the value OxFE to the
Output port.

sWait for a empty Input Buffer
waitl:

in al, ox64

test al, 00000010b

jne waitl

;Send O0xFE to the keyboard controller.
mov al, OxFE
out ox64, al

See Also

= PS/2

= PLO50 PS/2 Controller (ARM)
= PS/2 Keyboard

= PS/2 Mouse

Threads

http://wiki.osdev.org/%228042%22_PS/2_Controller 13/14



25.02.2015 "8042" PS/2 Controller - OSDev Wiki
» PS/2 controller initialisation

External Links

= SMS "8042" Datasheet (http://www.diakom.ru/el/elfirms/datashts/Smsc/42w11.pdf)

Retrieved from "http://wiki.osdev.org/index.php?title=%228042%22 PS/2_Controller&oldid=16840"
Categories: X86 | Common Devices

= This page was last modified on 3 October 2014, at 02:38.
= This page has been accessed 28,072 times.

http://wiki.osdev.org/%228042%22_PS/2_Controller 14/14



