25.02.2015 PCI - OSDev Wiki

PCI

From OSDev Wiki

Contents

= | The PCI Bus
= 2 Configuration Space
= 2.1 Configuration Mechanism #1
= 2.2 PCI Device Structure
= 2.3 Base Address Registers
= 2.4 Class Codes
= 3 Enumerating PCI Buses
= 3.1 "Brute Force" Scan
= 3.2 Recursive Scan
= 3.3 Recursive Scan With Bus Configuration
4 IRQ Handling
5 Multifunction Devices
6 Disclaimer
7 References
8 See Also
= 8.1 External Links

The PCI Bus

The PCI (Peripheral Component Interconnect (http://en.wikipedia.org/wiki/Conventional PCI)) bus was defined to establish a high
performance and low cost local bus that would remain through several generations of products. By combining a transparent upgrade
path from 132 MB/s (32-bit at 33 MHz) to 528 MB/s (64-bit at 66 MHz) and both 5 volt and 3.3 volt signaling environments, the PCI
bus meets the needs of both low end desktop systems as well as that of high-end LAN servers. The PCI bus component and add-in card
interface is processor independent, enabling an efficient transition to future processors, as well as use with multiple processor
architectures. The disadvantage of the PCI bus is the limited number of electrical loads it can drive. A single PCI bus can drive a
maximum of 10 loads. (Remember when counting the number of loads on the bus, a connector counts as one load and the PCI device
counts as another, and sometimes two.)

Configuration Space

The PCI specification provides for totally software driven initialization and configuration of each device (or target) on the PCI Bus via
a separate Configuration Address Space. All PCI devices, except host bus bridges, are required to provide 256 bytes of configuration
registers for this purpose.

Configuration read/write cycles are used to access the Configuration Space of each target device. A target is selected during a
configuration access when its IDSEL signal is asserted. The IDSEL acts as the classic "chip select" signal. During the address phase of
the configuration cycle, the processor can address one of 64 32-bit registers within the configuration space by placing the required
register number on address lines 2 through 7 (AD[7..2]) and the byte enable lines.

PCI devices are inherently little ENDIAN , meaning all multiple byte fields have the least significant values at the lower addresses. This
requires a Big ENDIAN" processor, such as a Power PC, to perform the proper byte-swapping of data read from or written to the PCI
device, including any accesses to the Configuration Address Space.

Systems must provide a mechanism that allows access to the PCI configuration space, as most CPUs do not have any such mechanism.
This task is usually performed by the Host to PCI Bridge (Host Bridge). Two distinct mechanisms are defined to allow the software to
generate the required configuration accesses. Configuration mechanism #1 is the preferred method, while mechanism #2 is provided for
backward compatibility. Only configuration mechanism #1 will be described here, as it is the only access mechanism that will be used
in the future.

Configuration Mechanism #1
Two 32-bit I/O locations are used, the first location (0xCF8) is named CONFIG_ADDRESS, and the second (0xCFC) is called

CONFIG_DATA. CONFIG_ADDRESS specifies the configuration address that is required to be accesses, while accesses to
CONFIG_DATA will actually generate the configuration access and will transfer the data to or from the CONFIG_DATA register.

http://wiki.osdev.org/PCI#Configuration_Space 113

25.02.2015 PCI - OSDev Wiki

The CONFIG_ADDRESS is a 32-bit register with the format shown in following figure. Bit 31 is an enable flag for determining when
accesses to CONFIG_DATA should be translated to configuration cycles. Bits 23 through 16 allow the configuration software to
choose a specific PCI bus in the system. Bits 15 through 11 select the specific device on the PCI Bus. Bits 10 through 8 choose a
specific function in a device (if the device supports multiple functions).

The least significant byte selects the offset into the 256-byte configuration space available through this method. Since all reads and
writes must be both 32-bits and aligned to work on all implementations, the two lowest bits of CONFIG_ADDRESS must always be
zero, with the remaining six bits allowing you to choose each of the 64 32-bit words. If you don't need all 32 bits, you'll have to perform
the unaligned access in software by aligning the address, followed by masking and shifting the answer.

31 30-24 23-16 15-11 10-8 7-2 1-0

Enable Bit | Reserved | Bus Number | Device Number | Function Number | Register Number | 00

The following code segment illustrates the use of configuration mechanism #1 to read 16-bit fields from configuration space. Note that
this segment, the functions sysOutLong and sysInLong are assembly language functions that make use of the OUTL and INL Pentium
assembly language instructions.

uintl6_t pciConfigReadWord (uint8 t bus, uint8_t slot,
uint8_t func, uint8_t offset)

{

uint32_t address;

uint32_t lbus = (uint32_t)bus;

uint32_t 1lslot (uint32_t)slot;

uint32_t 1lfunc (uint32_t)func;

uintlé_t tmp = 0;

(o)

/* create configuration address as per Figure 1 */
address = (uint32_t)((lbus << 16) | (1lslot << 11) |
(1func << 8) | (offset & oxfc) | ((uint32 t)0x80000000));

/* write out the address */

sysOutLong (©xCF8, address);

/* read in the data */

/* (offset & 2) * 8) = 0 will choose the first word of the 32 bits register */
tmp = (uintl6_t)((sysInLong (OxCFC) >> ((offset & 2) * 8)) & oxffff);

(tmp);

When a configuration access attempts to select a device that does not exist, the host bridge will complete the access without error,
dropping all data on writes and returning all ones on reads. The following code segment illustrates the read of a non-existent device.

——

uintl6_t pciCheckVendor(uint8_ t bus, uint8 t slot)

{
uintl6_t vendor, device;
/* try and read the first configuration register. Since there are no */
/* vendors that == OxFFFF, it must be a non-existent device. */
((vendor = pciConfigReadWord(bus,slot,0,0)) != OxFFFF) {
device = pciConfigReadWord(bus,slot,0,2);
} (vendor);
}

PCI Device Structure

The PCI Specification defines the organization of the 256-byte Configuration Space registers and imposes a specific template for the
space. Figures 2 & 3 show the layout of the 256-byte Configuration space. All PCI compliant devices must support the Vendor ID,
Device ID, Command and Status, Revision ID, Class Code and Header Type fields. Implementation of the other registers is optional,
depending upon the devices functionality.

The following field descriptions are common to all Header Types:

= Device ID: Identifies the particular device. Where valid IDs are allocated by the vendor.

http://wiki.osdev.org/PCI#Configuration_Space 2/13

25.02.2015 PCI - OSDev Wiki

Vendor ID: Identifies the manufacturer of the device. Where valid IDs are allocated by PCI-SIG to ensure uniqueness and
OxFFFF is an invalid value that will be returned on read accesses to Configuration Space registers of non-existent devices.
Status: A register used to record status information for PCI bus related events.

Command: Provides control over a device's ability to generate and respond to PCI cycles. Where the only functionality
guaranteed to be supported by all devices is, when a 0 is written to this register, the device is disconnected from the PCI bus for
all accesses except Configuration Space access.

Class Code: A read-only register that specifies the type of function the device performs.

Subclass: A read-only register that specifies the specific function the device performs.

Prog IF: A read-only register that specifies a register-level programming interface the device has, if it has any at all.

Revision ID: Specifies a revision identifier for a particular device. Where valid IDs are allocated by the vendor.

BIST: Represents that status and allows control of a devices BIST (built-in self test).

Header Type: Identifies the layout of the rest of the header begining at byte 0x10 of the header and also specifies whether or not
the device has multiple functions. Where a value of 0x00 specifies a general device, a value of 0x01 specifies a PCI-to-PCI
bridge, and a value of 0x02 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise,
it is a single function device.

Latency Timer: Specifies the latency timer in units of PCI bus clocks.

Cache Line Size: Specifies the system cache line size in 32-bit units. A device can limit the number of cacheline sizes it can
support, if a unsupported value is written to this field, the device will behave as if a value of 0 was written.

This table is applicable if the Header Type is 00h. (Figure 2)

register | bits 31-24 | bits 23-16 bits 15-8 bits 7-0
00 |Device ID Vendor ID
04 |Status Command
08 |Class code |Subclass Prog IF Revision ID
0C |BIST Header type | Latency Timer | Cache Line Size
10 |Base address #0 (BARO)
14 | Base address #1 (BAR1)
18 | Base address #2 (BAR2)
1C | Base address #3 (BAR3)
20 | Base address #4 (BAR4)
24 | Base address #5 (BARS)
28 | Cardbus CIS Pointer
2C |Subsystem ID Subsystem Vendor ID
30 | Expansion ROM base address
34 | Reserved Capabilities Pointer
38 | Reserved

3C | Max latency | Min Grant |Interrupt PIN | Interrupt Line

The following field descriptions apply if the Header Type is 0x00:

CardBus CIS Pointer: Points to the Card Information Structure and is used by devices that share silicon between CardBus and
PCI.

Interrupt Line: Specifies which input of the system interrupt controllers the device's interrupt pin is connected to and is
implemented by any device that makes use of an interrupt pin. For the x86 architecture this register corresponds to the PIC IRQ
numbers 0-15 (and not I[/O APIC IRQ numbers) and a value of OxFF defines no connection.

Interrupt Pin: Specifies which interrupt pin the device uses. Where a value of 0x01 is INTA#, 0x02 is INTB#, 0x03 is INTCH#,
0x04 is INTD#, and 0x00 means the device does not use an interrupt pin.

Max Latency: A read-only register that specifies how often the device needs access to the PCI bus (in 1/4 microsecond units).

Min Grant: A read-only register that specifies the burst period length, in 1/4 microsecond units, that the device needs (assuming
a 33 MHz clock rate).

Capabilities Pointer: Points to a linked list of new capabilities implemented by the device. Used if bit 4 of the status register
(Capabilities List bit) is set to 1. The bottom two bits are reserved and should be masked before the Pointer is used to access the
Configuration Space.

This table is applicable if the Header Type is 01h (PCI-to-PCI bridge) (Figure 3)

http://wiki.osdev.org/PCI#Configuration_Space 3/13

25.02.2015
register
00
04
08
0C
10
14
18
1C
20
24
28
2C
30
34
38
3C

bits 31-24 bits 23-16
Device ID
Status
Class code Subclass
BIST Header type
Base address #0 (BARO)

Base address #1 (BAR1)

Secondary Latency Timer | Subordinate Bus Number

Secondary Status

Memory Limit

Prefetchable Memory Limit
Prefetchable Base Upper 32 Bits
Prefetchable Limit Upper 32 Bits
I/0 Limit Upper 16 Bits
Reserved

Expansion ROM base address
Bridge Control

Here is the layout of the Header Type register:

Bit 7| Bits 6 to 0
MF |Header Type

MF - If MF = 1 Then this device has multiple functions.

PCI - OSDev Wiki
bits 15-8
Vendor ID
Command
Prog IF

Latency Timer

I/O Limit
Memory Base

bits 7-0

Revision ID

Cache Line Size

Secondary Bus Number | Primary Bus Number

I/0O Base

Prefetchable Memory Base

I/0 Base Upper 16 Bits

Interrupt PIN

Capability Pointer

Interrupt Line

Header Type - 00h Standard Header - 01h PCI-to-PCI Bridge - 02h CardBus Bridge

Here is the layout of the BIST register:

Bit 7
BIST Capable | Start BIST | Reserved

Bit 6 Bits 4 and 5 Bits 0 to 3

BIST Capable - Will return 1 the device supports BIST.

Completion Code

Start BIST - When set to 1 the BIST is invoked. This bit is reset when BIST completes. If BIST does not complete after 2 seconds the
device should be failed by system software.

Completion Code - Will return 0, after BIST execution, if the test completed successfully.

This table is applicable if the Header Type is 02h (PCI-to-CardBus bridge)

register
00
04
08
0C
10
14
18
1C
20
24

bits 31-24 bits 23-16
Device ID
Status
Class code Subclass
BIST Header type

CardBus Socket/ExCa base address

Secondary status

CardBus latency timer | Subordinate bus number
Memory Base Address 0

Memory Limit 0

Memory Base Address 1

http://wiki.osdev.org/PCI#Configuration_Space

bits 15-8
Vendor ID
Command
Prog IF

Latency Timer

Reserved

CardBus bus number

bits 7-0

Revision ID

Cache Line Size

Offset of capabilities list
PCI bus number

4/13

25.02.2015 PCI - OSDev Wiki
28 | Memory Limit 1
2C |1/O Base Address 0
30 | I/OLimit0O
34 |I/O Base Address 1
38 |I/O Limit 1
3C | Bridge Control Interrupt PIN Interrupt Line
40 | Subsystem Vendor ID Subsystem Device ID
44 16-bit PC Card legacy mode base address

Here is the layout of the Command register:

Bits 11

to 15 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit5 Bit 4 Bit3 | Bit2 | Bitl | Bit0
Interupt | L2t Back- I gpppa Parity VGA - [Memory Write g0 .1 | Bus | Memory | 1O
Reserved | . to-Back Reserved | Error Palette and Invalidate
Disable Enable Cycles |Master | Space | Space

Enable Response | Snoop Enable

Interrupt Disable - If set to 1 the assertion of the devices INTx# signal is disabled; otherwise, assertion of the signal is enabled.

Fast Back-Back Enable - If set to 1 indicates a device is allowed to generate fast back-to-back transactions; otherwise, fast back-to-
back transactions are only allowed to the same agent.

SERR# Enable - If set to 1 the SERR# driver is enabled; otherwise, the driver is disabled.

Bit 7 - As of revision 3.0 of the PCI local bus specification this bit is hardwired to 0. In earlier versions of the specification this bit was
used by devices and may have been hardwired to 0, 1, or implemented as a read/write bit.

Parity Error Response - If set to 1 the device will take its normal action when a parity error is detected; otherwise, when an error is
detected, the device will set bit 15 of the Status register (Detected Parity Error Status Bit), but will not assert the PERR# (Parity Error)
pin and will continue operation as normal.

VGA Palette Snoop - If set to 1 the device does not respond to palette register writes and will snoop the data; otherwise, the device will
trate palette write accesses like all other accesses.

Memory Write and Invalidate Enable - If set to 1 the device can generate the Memory Write and Invalidate command; otherwise, the
Memory Write command must be used.

Special Cycles - If set to 1 the device can monitor Special Cycle operations; otherwise, the device will ignore them.
Bus Master - If set to 1 the device can behave as a bus master; otherwise, the device can not generate PCI accesses.
Memory Space - If set to 1 the device can respond to Memory Space accesses; otherwise, the device's response is disabled.

I/0 Space - If set to 1 the device can respond to I/O Space accesses; otherwise, the device's response is disabled.

Here is the layout of the Status register:

Bit15 | Bit14 | Bit13 | Bit12 | Bit 11 fn‘:lsfo Bit8 Bit7 | Bit6 | Bit5 | Bit4 Bit 3 B‘tszo to
. . . . Master | Fast
I]?aertie e glirtl:id ﬁ/[eacsi:;ed Ezrc eelz‘t/ed "?"lzﬁnzltEd DEVSEL | Data | Back- Reserved 66 MEHz| Capabilities | Interrupt Reserved
ty y N & Timing |Parity |to-Back Capable | List Status

Error Error Abort Abort Abort Error | Capable

Detected Parity Error - This bit will be set to 1 whenever the device detects a parity error, even if parity error handling is disabled.
Signaled System Error - This bit will be set to 1 whenever the device asserts SERR#.

Received Master Abort - This bit will be set to 1, by a master device, whenever its transaction (except for Special Cycle transactions)
is terminated with Master-Abort.

Received Target Abort - This bit will be set to 1, by a master device, whenever its transaction is terminated with Target-Abort.
Signaled Target Abort - This bit will be set to 1 whenever a target device terminates a transaction with Target-Abort.

http://wiki.osdev.org/PCI#Configuration_Space 5/13

25.02.2015 PCI - OSDev Wiki

DEVSEL Timing - Read only bits that represent the slowest time that a device will assert DEVSEL# for any bus command except
Configuration Space read and writes. Where a value of 0x00 represents fast timing, a value of 0x01 represents medium timing, and a
value of 0x02 represents slow timing.

Master Data Parity Error - This bit is only set when the following conditions are met. The bus agent asserted PERR# on a read or
observed an assertion of PERR# on a write, the agent setting the bit acted as the bus master for the operation in which the error
occurred, and bit 6 of the Command register (Parity Error Response bit) is set to 1.

Fast Back-to-Back Capable - If set to 1 the device can accept fast back-to-back transactions that are not from the same agent;
otherwise, transactions can only be accepted from the same agent.

Bit 6 - As of revision 3.0 of the PCI local bus specification this bit is reserved. In revision 2.1 of the specification this bit was used to
indicate whether or not a device supported User Definable Features.

66 Mhz Capable - If set to 1 the device is capable of running at 66 Mhz; otherwise, the device runs at 33 MHz.

Capabilities List - If set to 1 the device implements the pointer for a New Capabilities Linked list at offset 0x34; otherwise, the linked
list is not available.

Interrupt Status - Represents the state of the device's INTx# signal. If set to 1 and bit 10 of the Command register (Interrupt Disable
bit) is set to 0 the signal will be asserted; otherwise, the signal will be ignored.

Recall that the PCI devices follow little ENDIAN ordering. The lower addresses contain the least significant portions of the field.
Software to manipulate this structure must take particular care that the endian-ordering follows the PCI devices, not the CPUs.

Base Address Registers

Base address Registers (or BARSs) can be used to hold memory addresses used by the device, or offsets for port addresses. Typically,
memory address BARs need to be located in physical ram while I/O space BARs can reside at any memory address (even beyond
physical memory). To distinguish between them, you can check the value of the lowest bit. The following tables describe the two types
of BARs:

Memory Space BAR Layout
31-4 3 2-1 0

16-Byte Aligned Base Address | Prefetchable | Type | Always 0

1/0 Space BAR Layout
31-2 1 0

4-Byte Aligned Base Address | Reserved | Always 1

The Type field of the Memory Space BAR Layout specifies the size of the base register and where in memory it can be mapped. If it
has a value of 0x00 then the base register is 32-bits wide and can be mapped anywhere in the 32-bit Memory Space. A value of 0x02
means the base register is 64-bits wide and can be mapped anywhere in the 64-bit Memory Space (A 64-bit base address register
consumes 2 of the base address registers available). A value of 0x01 is reserved as of revision 3.0 of the PCI Local Bus Specification.
In earlier versions it was used to support memory space below 1MB (16-bit wide base register that can be mapped anywhere in the 16-
bit Memory Space).

When you want to retrieve the actual base address of a BAR, be sure to mask the lower bits. For 16-Bit Memory Space BARs, you
calculate (BAR[x] & 0xFFFO0). For 32-Bit Memory Space BARs, you calculate (BAR[x] & OxFFFFFFFO0). For 64-Bit Memory Space
BARs, you calculate (BAR[x] & OxFFFFFFFO0) + ((BAR[x+1] & OXFFFFFFFF) << 32)) For I/O Space BARs, you calculate (BAR[x]
& OxFFFFFFFC).

To determine the amount of address space needed by a PCI device, you must save the original value of the BAR, write a value of all 1's
to the register, then read it back. The amount of memory can then be determined by masking the information bits, performing a bitwise
NOT ('~ in C), and incrementing the value by 1. The original value of the BAR should then be restored. The BAR register is naturally
aligned and as such you can only modify the bits that are set. For example, if a device utilizes 16 MB it will have BARO filled with
0xFF000000 (0x01000000 after decoding) and you can only modify the upper 8-bits. [1]
(http://www.pcisig.com/reflector/msg05233.html)

Class Codes

http://wiki.osdev.org/PCI#Configuration_Space 6/13

25.02.2015

The Class Code, Subclass, and Prog IF registers are used to identify the device's type, the device's function, and the device's register-

PCI - OSDev Wiki

level programming interface, respectively.

The following table represents the possible device types:

Class Code
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0xOF
0x10
Ox11
0x12 - OxFE
OxFF

Description

Device was built prior definition of the class code field

Mass Storage Controller

Network Controller
Display Controller

Multimedia Controller

Memory Controller

Bridge Device

Simple Communication Controllers

Base System Peripherals

Input Devices

Docking Stations

Processors

Serial Bus Controllers

Wireless Controllers

Intelligent I/O Controllers

Satellite Communication Controllers

Encryption/Decryption Controllers

Data Acquisition and Signal Processing Controllers

Reserved

Device does not fit any defined class.

The following table represents the possible device functions

Class Code | Subclass | Prog IF

0x00

0x01

0x02

0x00
0x01
0x00
0x01
0x02
0x03
0x04

0x05

0x06

0x07
0x80
0x00
0x01
0x02
0x03
0x04
0x05

0x00
0x00
0x00
0x--

0x00
0x00
0x00
0x20
0x30
0x00
0x01
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00

Description
Any device except for VGA-Compatible devices
VGA-Compatible Device
SCSI Bus Controller
IDE Controller
Floppy Disk Controller
IPI Bus Controller
RAID Controller
ATA Controller (Single DMA)
ATA Controller (Chained DMA)
Serial ATA (Vendor Specific Interface)
Serial ATA (AHCI 1.0)
Serial Attached SCSI (SAS)
Other Mass Storage Controller
Ethernet Controller
Token Ring Controller
FDDI Controller
ATM Controller
ISDN Controller
WorldFip Controller

http://wiki.osdev.org/PCI#Configuration_Space

7113

25.02.2015

0x06 0x--

0x80 0x00

0x00 0x00

0x01

0x03 0x01 0x00
0x02 0x00

0x80 0x00

0x00 0x00

0x04 0x01 0x00
0x02 0x00

0x80 0x00

0x00 0x00

0x05 0x01 0x00
0x80 0x00

0x00 0x00

0x01 0x00

0x02 0x00

0x03 0x00

0x04 0x00

0x01

0x06 0x05 0x00
0x06 0x00

0x07 0x00

0x08 0x--

0x09 Ox40

0x80

0x0A 0x00

0x80 0x00

0x00

0x01

0x02

0x00 0x03

0x04

0x05

0x06

0x00

0x01

0x01 0x02

0x07 0x03
O0xFE

0x02 0x00

0x00

0x01

ox03 | OX02

0x03

0x04

PCI - OSDev Wiki

PICMG 2.14 Multi Computing

Other Network Controller

VGA-Compatible Controller

8512-Compatible Controller

XGA Controller

3D Controller (Not VGA-Compatible)

Other Display Controller

Video Device

Audio Device

Computer Telephony Device

Other Multimedia Device

RAM Controller

Flash Controller

Other Memory Controller

Host Bridge

ISA Bridge

EISA Bridge

MCA Bridge

PCI-to-PCI Bridge

PClI-to-PCI Bridge (Subtractive Decode)
PCMCIA Bridge

NuBus Bridge

CardBus Bridge

RACEway Bridge

PCI-to-PCI Bridge (Semi-Transparent, Primary)
PCI-to-PCI Bridge (Semi-Transparent, Secondary)
InfiniBrand-to-PCI Host Bridge

Other Bridge Device

Generic XT-Compatible Serial Controller
16450-Compatible Serial Controller
16550-Compatible Serial Controller
16650-Compatible Serial Controller
16750-Compatible Serial Controller
16850-Compatible Serial Controller
16950-Compatible Serial Controller

Parallel Port

Bi-Directional Parallel Port

ECP 1.X Compliant Parallel Port

IEEE 1284 Controller

IEEE 1284 Target Device

Multiport Serial Controller

Generic Modem

Hayes Compatible Modem (16450-Compatible Interface)
Hayes Compatible Modem (16550-Compatible Interface)
Hayes Compatible Modem (16650-Compatible Interface)

Hayes Compatible Modem (16750-Compatible Interface)

http://wiki.osdev.org/PCI#Configuration_Space

8/13

25.02.2015
0x04
0x05
0x80

0x00

0x01
0x08

0x02

0x03

0x04
0x80
0x00
0x01
0x02
0x09 0x03

0x04

0x80
0x00
0x80
0x00
0x01
0x02
0x0B 0x10
0x20
0x30
0x40

0x0A

0x00

0x01
0x02

0x03

0x0C
0x04
0x05
0x06

0x00
0x00
0x00
0x00
0x01

0x02
0x10
0x20
0x00
0x01

0x02
0x00
0x01

0x02
0x00
0x01

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x10
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x10
0x00
0x00
0x00
0x10
0x20
0x80
OxFE
0x00
0x00
0x00
0x00

PCI - OSDev Wiki

IEEE 488.1/2 (GPIB) Controller
Smart Card

Other Communications Device
Generic 8259 PIC

ISA PIC

EISA PIC

I/O APIC Interrupt Controller
I/0(x) APIC Interrupt Controller
Generic 8237 DMA Controller
ISA DMA Controller

EISA DMA Controller

Generic 8254 System Timer
ISA System Timer

EISA System Timer

Generic RTC Controller

ISA RTC Controller

Generic PCI Hot-Plug Controller
Other System Peripheral
Keyboard Controller

Digitizer

Mouse Controller

Scanner Controller

Gameport Controller (Generic)
Gameport Contrlller (Legacy)
Other Input Controller

Generic Docking Station

Other Docking Station

386 Processor

486 Processor

Pentium Processor

Alpha Processor

PowerPC Processor

MIPS Processor

Co-Processor

IEEE 1394 Controller (FireWire)

IEEE 1394 Controller (1394 OpenHCI Spec)

ACCESS.bus
SSA

USB (Universal Host Controller Spec)

USB (Open Host Controller Spec

USB2 Host Controller (Intel Enhanced Host Controller Interface)

USB

USB (Not Host Controller)
Fibre Channel

SMBus

InfiniBand

IPMI SMIC Interface

http://wiki.osdev.org/PCI#Configuration_Space

913

25.02.2015

0x0D

0x0E

0x0F

0x10

0x11

PCI - OSDev Wiki
0x07 0x01 IPMI Kybd Controller Style Interface
0x02 IPMI Block Transfer Interface
0x08 0x00 SERCOS Interface Standard (IEC 61491)
0x09 0x00 CANbus
0x00 0x00 iRDA Compatible Controller
0x01 0x00 Consumer IR Controller
0x10 0x00 RF Controller
0x11 0x00 Bluetooth Controller
0x12 0x00 Broadband Controller
0x20 0x00 Ethernet Controller (802.11a)
0x21 0x00 Ethernet Controller (802.11b)
0x80 0x00 Other Wireless Controller
0x-- 120 Architecture
0x00 Message FIFO
0x01 0x00 TV Controller
0x02 0x00 Audio Controller
0x03 0x00 Voice Controller
0x04 0x00 Data Controller

0x00

0x00 0x00 Network and Computing Encrpytion/Decryption

0x10 0x00 Entertainment Encryption/Decryption

0x80 0x00 Other Encryption/Decryption

0x00 0x00 DPIO Modules

0x01 0x00 Performance Counters

0x10 0x00 Communications Syncrhonization Plus Time and Frequency Test/Measurment
0x20 0x00 Management Card

0x80 0x00 Other Data Acquisition/Signal Processing Controller

Enumerating PCI Buses

There are 3 ways to enumerate devices on PCI buses. The first way is "brute force", checking every device on every PCI bus (regardless
of whether the PCI bus exists or not). The second way avoids a lot of work by figuring out valid bus numbers while it scans, and is a
little more complex as it involves recursion. For both of these methods you rely on something (firmware) to have configured PCI buses
properly (setting up PCI to PCI bridges to forward request from one bus to another). The third method is like the second method, except
that you configure PCI bridges while you're doing it.

For all 3 methods, you need to be able to check if a specific device on a specific bus is present and if it is multi-function or not. Pseudo-
code might look like this:

__

void checkDevice(uint8 t bus, uint8 t device) {

}

uint8 t function = 0;

vendorID = getVendorID(bus, device, function);
(vendorID = OxFFFF) ; // Device doesn't exist
checkFunction(bus, device, function);
headerType = getHeaderType(bus, device, function);
((headerType & 0x80) != 0) {
/* It is a multi-function device, so check remaining functions */
(function = 1; function < 8; function++) {
(getVendorID(bus, device, function) != OxFFFF) {
checkFunction(bus, device, function);

http://wiki.osdev.org/PCI#Configuration_Space 10/13

25.02.2015 PCI - OSDev Wiki

void checkFunction(uint8 t bus, uint8_ t device, uint8 t function) {

Please note that if you don't check bit 7 of the header type and scan all functions, then some single-function devices will report details
for "function 0" for every function.

"Brute Force'" Scan

For the brute force method, the remaining code is relatively simple. Pseudo-code might look like this:

void checkAllBuses(void) {
uint8_t bus;
uint8 t device;

(bus = @; bus < 256; bus++) {
(device = ©; device < 32; device++) {
checkDevice(bus, device);

For this method, there are 32 functions per bus and 256 buses, so you call "checkDevice()" 8192 times.

Recursive Scan

The first step for the recursive scan is to implement a function that scans one bus. Pseudo-code might look like this:

void checkBus(uint8 t bus) {
uint8_t device;

(device = 0; device < 32; device++) {
checkDevice(bus, device);

The next step is to add code in "checkFunction()" that detects if the function is a PCI to PCI bridge. If the device is a PCI to PCI bridge
then you want to extract the "secondary bus number" from the bridge's configuration space and call "checkBus()" with the number of
the bus on the other side of the bridge.

Pseudo-code might look like this:

void checkFunction(uint8 t bus, uint8 t device, uint8 t function) {
uint8_t baseClass;
uint8_t subClass;
uint8 t secondaryBus;

baseClass = getBaseClass(bus, device, function);
subClass = getSubClass(bus, device, function);
((baseClass == 0x06) && (subClass == 0x04)) {
secondaryBus = getSecondaryBus(bus, device, function);
checkBus(secondaryBus);

The final step is to handle systems with multiple PCI host controllers correctly. Start by checking if the device at bus 0, device 0 is a
multi-function device. If it's not a multi-function device, then there is only one PCI host controller and bus 0, device 0, function 0 will
be the PCI host controller responsible for bus 0. If it is a multifunction device, then bus 0, device 0, function 0 will be the PCI host
controller responsible for bus 0; bus 0, device 0, function 1 will be the PCI host controller responsible for bus 1, etc (up to the number
of functions supported).

http://wiki.osdev.org/PCI#Configuration_Space 1113

25.02.2015 PCI - OSDev Wiki
Pseudo-code might look like this:

——

void checkAllBuses(void) {
uint8_t function;
uint8 t bus;

headerType = getHeaderType(9, @, 0);
((headerType & 0x80) == 0) {
/* Single PCI host controller */
checkBus(9);
¥ {
/* Multiple PCI host controllers */
(function = @; function < 8; function++) {
(getVendorID(@, @, function) != OxFFFF) break;
bus = function;
checkBus(bus);

..

Recursive Scan With Bus Configuration

This is similar to the recursive scan above; except that you set the "secondary bus" field in PCI to PCI bridges (using something like
"setSecondaryBus(bus, device, function, nextBusNumber++);" instead of the "getSecondaryBus();"). However; if you are configuring
PCI buses you are also responsible for configuring the memory areas/BARs in PCI functions, and ensuring that PCI bridges forward
requests from their primary bus to their secondary buses.

Writing code to support this without a deep understanding of PCI specifications is not recommended; and if you have a deep
understanding of PCI specifications you have no need for pseudo code. For this reason there will be no example code for this method
here.

IRQ Handling

If you're using the old PIC, your life is really easy. You have the Interrupt Line field of the header, which is read/write (you can change
it's value!) and it says which interrupt will the PCI device fire when it needs attention.

If you plan to use the I/O APIC, your life will be a nightmare. You have 4 new IRQs called INTA#, INTB#, INTC# and INTD#. You
can find which IRQ the device will use in the Interrupt Line field. In the ACPI AML Tables you will find (using ACPICA) that INTA#
is connected to a specified interrupt line, INTB# to another, etc...

So far so good. You have, say, 20 devices. 10 of those are using INTA#, 5 for INTB#, 5 for INTC#, and none for INTD#. So when the
IRQ number related to #INTC you have to scan the 5 devices to understand who was the interested one. So there is a LOT of IRQ
sharing, expecially for INTA#.

With time manufacturers started to use mainly INTA#, forgetting the existence of other pins. So you will likely have 18 devices on
INTA# and 2 on INTB#. Motherboard manufacturers decided take the situation in control. So at boot the INTx# are remapped, so that
you will have 5 devices for INTA#, 5 for INTB#, 5 for INTC#, and 5 for INTD# (in the best case). That's great! IRQs are balanced and
IRQ sharing is reduced. The only problem is that you don't know what devices where mapped. If you read the Interrupt Pin you still get
INTA#. You now need to parse the MP Tables or the ACPI ones to solve the mess. Good luck.

Multifunction Devices

Multifunction devices behave in the same manner as normal PCI devices. The easiest way to detect a multifunction device is bit 7 of the
header type field. If it is set (value = 0x80), the device is multifunction -- else it is not. Make sure you mask this bit when you determine
header type. To detect the number of functions you need to scan the PCI configuration space for every function - unused functions have
vendor OXxFFFF. Device IDs and Class codes vary between functions. Functions are not neccesarily in order - you can have function
0x0, 0x1 and 0x7 in use.

Disclaimer

This text originates from "Pentium on VME", unknown author, mdSsum d292807a3c56881c6faba7alecfd4c79. The original document
is apparently no longer present on the Web ...

http://wiki.osdev.org/PCI#Configuration_Space 12/13

25.02.2015 PCI - OSDev Wiki

Closest match: [2] (http://wayback.archive.org/web/20060423234540/http://www.quicklogic.com/images/appnote10.pdf)

References

= PCI Local Bus Specification, revision 3.0, PCI Special Interest Group, August 12, 2002

See Also

PCI Express

External Links

http://www.ics.uci.edu/~harris/ics216/pci/PCI_22.pdf
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide- 1
http://docs.oracle.com/cd/E19120-01/open.solaris/819-3196/hwovr-22/index.html
http://tldp.org/LDP/tlk/dd/pci.html

http://www.pcidatabase.com/

http://pciids.sourceforge.net/ (More up to date PCI vendor and device numbers)
http://www.acm.uiuc.edu/sigops/roll_your_own/7.c.html
http://tldp.org/LDP/tlk/dd/pci.html
http://msdn.microsoft.com/en-us/library/ms903537.aspx
http://www.pcisig.com/specifications/conventional/ ECN_SATA Class_Code.pdf

Retrieved from "http://wiki.osdev.org/index.php?title=PCl&oldid=17409"
Category: Buses

This page was last modified on 1 January 2015, at 13:04.
This page has been accessed 181,219 times.

http://wiki.osdev.org/PCI#Configuration_Space

13/13

