25.02.2015 Multitasking Systems - OSDev Wiki

Multitasking Systems

From OSDev Wiki

Multitasking Systems are operating systems (or even system extensions) which divide available
processor time between several tasks automatically, creating the illusion that the tasks are running
simultaneously.

Contents

= ] Types of Multitasking Systems
= 1.1 Cooperative Multitasking
= 1.2 Preemptive Multitasking
= 2 How does it work
= 3 See Also
= 3.1 Articles
= 3.2 Threads
= 3.3 External Links

Types of Multitasking Systems
There are many ways multitasking can be achieved.
Cooperative Multitasking

This concept runs an application until it exits or yields control back to the OS. Examples for cooperative
multitasking systems are pre-X MacOS, or Windows 3.x.

In some single language cooperative multitasking systems, such as Oberon and ruby, the
compiler/interpreter automatically ensures that the code will periodically yield control; it allows such
program to run in multi-threading on non-preemptive OS such as DOS. As yielding isn't necessary
anymore, I'm not sure if we can still say it's cooperative multitasking.

Preemptive Multitasking

In a preemptive multitasking system, the OS can take away control from (preempt) an application after a
time slice is used up or a signal occurred. An example would be e.g. Linux, *BSD, post-3.x Windows,
BeOS, or AmigaOS.

You can further subdivide these systems into those who can preempt applications, and those who can
preempt the kernel itself. Linux (pre-2.6 kernel) is an example of the former, while e.g. AmigaOS is an
example for the latter. This is a major concern for multimedia applications or any "soft" [Real-Time
Systems] because a non-preemptive kernel introduces latencies that can ruin such "near real-time"
performance.

http://wiki.osdev.org/Multitasking_Systems 1/3



25.02.2015 Multitasking Systems - OSDev Wiki

How does it work

You have programs running. Each program has some binary code to be executed by the processor and an
execution context made of e.g. registers state, stack content, etc.

Since you have a single CPU, you have a single program executed at a given moment and its execution
context is the state of the cpu's registers while you may have plenty of programs sleeping, waiting for
their turn with their context saved in OS's datastructures, right ?

Now, the OS has set up a timer interrupt, which causes the OS call a specific interrupt service routine at
regular interval. When the timeslot for the current program runs out, the routine will save the current
CPU context into a datastructure, select a new program to be run for the next timeslot, and load the CPU
registers with the values that were saved in that process's datastructure.

If you still want to figure out, imagine a machine with an accumulator and a stack pointer. You can save
the machine state, switch and restore another machine state with

EPUSH ;5 put the accumulator's content on stack
'LOAD [current_pid] ;5 load the current PID in the accumulator
'STORE_SP [context_table+ACC] ;5 save the stack of the suspended task

;5 get somehow the PID for the next task into ACC, without using the stack .

iLOAD_SP [context_table+ACC] ;5 load the stack of the chosen task

ﬁTORE [current_pid] ;5 store it's PID
'POP ;5 get back the accumulator's content
\IRET ;5 end of interrupt

1

IMM @ ;; into accumulator
there:

EINC ;5 accumulator++
JMP here

MM @

rthere:

DEC ;; accumulator --
1IMP there

Sketch on a papersheet the memory of the machine, with the pid_table, the two stacks , the current pid
variable, and then go. You should be able to emulate the behavior of that machine if --say-- you have a
interrupt every 10+some_number you get by rolling a dice machine instructions.

And you'll see it can continue working on program 1 after it has been interrupted for 10+ instructions by
program 2.

Of course "10+dice" is not enough to get decent performances. On modern systems, your timeslice is
usually of a few milliseconds, which makes millions of instructions! Moreover, you don't always switch
when the timer arise (because you might want the system clock more accurate than the switching rate)
and you can switch on other events (e.g. because a program needs to wait for something or because
something important like the end of a disk request happened).

http://wiki.osdev.org/Multitasking_Systems 2/3



25.02.2015 Multitasking Systems - OSDev Wiki

See Also

Articles

= Context Switching
= Monotasking Systems
= Scheduling Algorithms

Threads

= Designing a kernel to be preemptible
= Making a fully preemptible kernel

External Links

= Computer Multitasking on Wikipedia.

Retrieved from "http://wiki.osdev.org/index.php?title=Multitasking Systems&oldid=9294"
Category: Task Models

= This page was last modified on 29 November 2009, at 19:32.
= This page has been accessed 47,912 times.

http://wiki.osdev.org/Multitasking_Systems 3/3



