25.02.2015 Modular Kernel - OSDev Wiki

Modular Kernel

From OSDev Wiki

Contents

= | What is a Modular Kernel
= 2 What are some advantages and disadvantages for a Modular
Kernel?
= 2.1 Advantages
= 2.2 Disadvantages
3 What does a Modular Kernel look like ?
4 How can such a system boot in first place ?
5 See Also
= 5.1 Forum Threads

What is a Modular Kernel

A modular kernel is an attempt to merge the good points of kernel-
level drivers and third-party drivers. In a modular kernel, some part of
the system core will be located in independent files called modules that
can be added to the system at run time. Depending on the content of
those modules, the goal can vary such as:

= only loading drivers if a device is actually found
= only load a filesystem if it gets actually requested

Kernel Designs

Models

Monolithic Kernel
Microkernel
Hybrid Kernel
Exokernel
Nano/Picokernel
Cache Kernel
Virtualizing Kernel
Megalithic Kernel

Other Concepts

Modular Kernel
Higher Half Kernel
64-bit Kernel
Bare Bones

= only load the code for a specific (scheduling/security/whatever) policy when it should be

evaluated
= ¢fC.

The basic goal remains however the same: keep what is loaded at boot-time minimal while still allowing
the kernel to perform more complex functions. The basics of modular kernel are very close to what we
find in implementation of plugins in applications or dynamic libraries in general.

What are some advantages and disadvantages for a Modular

Kernel?

Advantages

= The most obvious is that the kernel doesn't have to load everything at boot time; it can be
expanded as needed. This can decrease boot time, as some drivers won't be loaded unless the
hardware they run is used (NOTE: This boot time decrease can be negligible depending on what

drivers are modules, how they're loaded, etc.)
= The core kernel isn't as big
= [f you need a new module, you don't have to recompile.

http://wiki.osdev.org/Modular_Kernel

13



25.02.2015 Modular Kernel - OSDev Wiki

Disadvantages

= [t may lose stability. If there is a module that does something bad, the kernel can crash, as
modules should have full permissions.

= _.and therefore security is compromised. A module can do anything, so one could easily write an
evil module to crash things. (Some OSs, like Linux, only allow modules to be loaded by the root
user.)

= Coding can be more difficult, as the module cannot reference kernel procedures without kernel
symbols.

What does a Modular Kernel look like ?

There are several components that can be identified in virtually every modular kernel:

the core
this is the collection of features in the kernel that are absolutely mandatory regardless of whether
you have modules or not.

the modules loader
this is a part of the system that will be responsible of preparing a module file so that it can be used
as if it was a part of the core itself.

the kernel symbols table
This contains additional information about the core and loaded modules that the module loader
needs in order to /ink a new module to the existing kernel.

the dependencies tracking
As soon as you want to unload some module, you'll have to know whether you can do it or not.
Especially, if a module X has requested symbols from module Z, trying to unload Z while X is
present in the system is likely to cause havoc.

modules
Every part of the system you might want (or don't want) to have.

How can such a system boot in first place ?

Modularization must be done within certain limits if you still want your system to be able to boot.
Pushing al/l the filesystems and device drivers (including boot device driver) into module will probably
make the boot time a hard time. Following solutions can however be used:

= The kernel is provided with an extremely simple filesystem (e.g. SCO's BFS) driver and that
filesystem contains modules to access the rest of system storage (e.g. module for ATA, SCSI,
EXT2FS, ReiserFS, FAT, NTES ...).

= The kernel comes with a built-in native file system driver and other storage modules as well as
primary configuration files should be stored using that native filesystem. This was the approach
followed by Linux, and as soon as some people decided to have reiser everywhere, ext2-fs only
kernels start having trouble on some machines.

= The bootloader knows it should not only load the kernel but also a collection of pre-configured
modules so that the kernel only needs to check those pre-loaded modules and initialize them to
access other modules and primary configuration files. This basically means that your bootloader is
somehow an OS of its own such as GRUB

Anyway, ramdisk drivers and dedicated boot partitions/reserved sectors will be your friends.

http://wiki.osdev.org/Modular_Kernel 23



25.02.2015 Modular Kernel - OSDev Wiki

See Also

Forum Threads

Design of a basic module loader

Calling a function knowing its name

Ideas for IPC

Coff 1386 relocations

Device Drivers Interface

Loading Drivers into Kernel

= Design & Implementation of Extensible OS

Retrieved from "http://wiki.osdev.org/index.php?title=Modular Kernel&oldid=16711"
Category: Kernel

= This page was last modified on 14 September 2014, at 07:56.
= This page has been accessed 52,330 times.

http://wiki.osdev.org/Modular_Kernel 313



