25.02.2015 Memory management - OSDev Wiki

Memory management

From OSDev Wiki

Memory management is a critical part of any operating system kernel. Providing a quick way for
programs to allocate and free memory on a regular basis is a major responsibility of the kernel. There
are many implementations for allocating physical memory including bitmaps, buddy allocation and
using tree structures or queues/stacks.

If you are looking for heap type memory management, which is the allocation of smaller chunks of
memory not on large boundaries then see the Heap page. A heap is commonly implemented (in the
popular way of thinking) not only in the kernel, but also in applications - in the form of a standard
library.

Contents

1 Address Spaces
= 1.1 Physical Address Space
= 1.2 Virtual Address Space
2 Memory Translation Systems
= 2.1 Segmentation
= 2.2 Paging
3 Virtual Memory
4 See Also
= 4.1 Articles
= 4.2 Threads
= 4.3 External Links

Address Spaces

Many platforms, including x86, use a memory management unit (MMU) to handle translation between
the virtual and physical address spaces. Some architectures have the MMU built-in, while others have a
separate chip. Having multiple address spaces allows each task to have its own memory space to work
in. In modern systems this is a major part of memory protection. Keeping processes' memory spaces
separate allows them to run without causing problems in another process's memory space.

Physical Address Space

The physical address space is the direct memory address used to access a real location in RAM. The
addresses used in this space are the bit patterns used to identify a memory location on the address bus.

In this memory model, every executable or library must either use PIC (position-independent code), or
come with relocation tables so jump and branch targets can be adjusted by the loader.

http://wiki.osdev.org/Memory_management

1/4

25.02.2015 Memory management - OSDev Wiki

The AmigaOS used this memory model, in absence of a MMU in early 680x0 CPUs. It is most efficient,
but it does not allow for protecting processes from each other, thus it is considered obsolete in today's
desktop operating systems. It is also prone to memory fragmentation; certain embedded systems still use
it, however.

Virtual Address Space

The advent of MMUs (Memory Management Units) allows virtual addresses to be used. A virtual
address can be mapped to any physical address. It is possible to provide each executable with its own
address space, so that memory always starts at 0x0000 0000. This relieves the executable loader of some
relocation work, and solves the memory fragmentation problem - you no longer need physically
continuous blocks of memory. And since the kernel is in control of the virtual-to-physical mapping,
processes cannot access each other's memory unless allowed to do so by the kernel.

Memory Translation Systems

The x86 platform is unique in modern computer systems in that it has two methods for handling the
mapping between virtual and physical addresses. The two methods, paging and segmentation, each use a
very different system to manage memory mapping.

Segmentation

Main article: Segmentation

Segmentation is not commonly available in mainstream systems except for the x86. In protected mode
this method involves separating each area of memory for a process into units. This is handled by the
segment registers: CS, DS, SS, ES, FS, GS (CodeSegment, DataSegment, StackSegment, the rest are
ExtraSegments).

Paging
Main article: Paging

Having an individual virtual-to-physical mapping for each address is of course ineffective. The
traditional approach to virtual memory is to split up the available physical memory into chunks (pages),
and to map virtual to physical addresses page-wise. This task is largely handled by the MMU, so the
performance impact is low, and generally accepted as an appropriate price to pay for memory protection.

[Physical Memory| [Process A | [Process B

@ex|H E L L (Page Table] [Virtual Memory | | |[Page Table| [Virtual Memory |
R !

g;:ULgﬂ 06x (00 ||@Ox|H E L L 00x (03 | |@@x|H A V E

a3x|H AV E 01x |02 Plx(0 WO Blx |05 @lx| LOT

o [T 02x|01 ||@2x[R L D ! 02x|86 ||@2x|5 O F

05"“ LoT D3x|n.a. | | 03x | peapssss 03x |04 3x] FUN

aexls 0 F 04x n.a. | | 0dx | 04x n.a. | | 0dx |kt

m':--:' 05x |07 e5x|; -) 05x |07 e5x|; -)

paging illustrated: two process with different views of the same physical memory

http://wiki.osdev.org/Memory_management 2/4

25.02.2015 Memory management - OSDev Wiki

Virtual Memory

The next step is, instead of reporting an "out of memory" once the physical memory runs out, is to take
pages that are not actually accessed currently, and write them to hard disk (swapfile or -partition) -
freeing up the physical memory page. This is referred to as "paging out" memory.

This requires additional bookkeeping and scheduling, introduces a severe performance hit when a
process accesses a page that's currently swapped out and must be swapped in again from hard drive, and
requires some smart design to run efficiently at all. Do it wrong, and this one part of your OS can
severely impact your performance.

On the other hand, your "virtual address space" grows to whatever your CPU and hard drive can handle.
In concept, CPU caches and RAM simply become cache layers on top of your hard drive, which
represents your "real" memory limitation.

Page swapping systems relies on the assumption that, at a given time, a process does not need all of its
memory to work properly, but only a subset of it (like, if you're copying a book, you certainly don't need
the whole book and a full set of blank pages: the current chapter and a bunch of blank page can be
enough if someone can bring you new blank pages and archive the pages you've just written when you
come short on blank pages, or bring you the next chapter when you're almost done with the current one).
This is known as the working set abstraction. In order to run correctly, a process requires at least its
working set of physical pages: if less pages are provided to the process, there's a high risk of thrashing,
which means the process will be constantly requiring pages to be swapped in -- which forces other pages
from this process's working set to be swapped out while they should have remained present.

Note: there are alternatives to page-swapping like segments-swapping and process-
swapping. In those cases, the swap is rather user-software controlled, which puts more
stress on the application developer and leads to longer swapping burst as the logical things
to be swapped are bigger than 4K pages. Other note: mainstream desktop OSes have a
speculative algorithm that tries to reduce the 'page miss' frequency by loading *more* than
what is required, and hoping that these extra pages will be useful. As programs tend to have
localized access and that disks can read a track of N sectors faster than N independent
sector, speculative swap-in may pay.

See Also

Articles

= Detecting Memory (x86)

Garbage collection

Memory Allocation

Page Frame Allocation

Writing a memory manager - a tutorial

Threads

= Paging Mechanisms
= Paging Concepts (by Brendan)
= Paging Explained (by Creature)

External Links

http://wiki.osdev.org/Memory_management 3/4

25.02.2015 Memory management - OSDev Wiki

AMD Systems Programming Documentation (http://www.amd.com/us-
en/Processors/DevelopWithAMD/0,,30 2252 739 7044,00.html) Chapters 3 & 4 of Volume 2
Intel Systems Programming Documentation (http://www.intel.com/products/processor/manuals/)
Chapters 3 & 4 of Volume 3A

LinuxMM (http://linux-mm.org/) - A wiki documenting memory management projects and
development

Memory Management Articles (http://www.osdever.net/tutorials.php?cat=6&sort=1) - Bona Fide
OS Development Articles on Memory Management

Memory management on Wikipedia.

Jun 2008: Motherboard Chipsets and the Memory Map
(http://duartes.org/gustavo/blog/post/motherboard-chipsets-memory-map) by Gustavo Duarte
Jan 2009: Anatomy of a Program in Memory (http://duartes.org/gustavo/blog/post/anatomy-of-a-
program-in-memory) by Gustavo Duarte

Retrieved from "http://wiki.osdev.org/index.php?title=Memory management&oldid=15601"
Category: Memory management

This page was last modified on 21 February 2014, at 01:29.
This page has been accessed 104,849 times.

http://wiki.osdev.org/Memory_management

44

