25.02.2015 Interrupt Descriptor Table - OSDev Wiki

Interrupt Descriptor Table

From OSDev Wiki

The Interrupt Descriptor Table (IDT) is specific to the 1386 architecture. It is the Protected mode
counterpart to the Real Mode Interrupt Vector Table (IVT) telling where the Interrupt Service Routines
(ISR) are located. It is similar to the Global Descriptor Table in structure.

The IDT entries are called gates. It can contain Interrupt Gates, Task Gates and Trap Gates.

Contents

»] Location and Size
= 2 Structure
3 1386 Interrupt Gate
= 3.1 1386 Trap Gate
» 321386 Task Gate
4 Loading/Storing
5 IDT in IA-32e Mode (64-bit IDT)
6 See Also
n 6.1 Articles
» 6.2 External references

Location and Size

Location of IDT (address and size) is kept in the IDTR register of the CPU, which can be loaded/stored
using LIDT, SIDT instructions.

IDTR

Name Bit | Description

Defines the length of the IDT in bytes - 1 (minimum value is 100h, a value of 1000h
means 200h interrupts).

Base |16..47 This 32 bits are the linear address where the IDT starts (INT 0)

Limit |0..15

This is similar to the GDT, except:

= The first entry (at zero offset) is used in the IDT.

= There are 256 interrupts (0..255), so IDT should have 256 entries, each entry corresponding to a
specific interrupt.

= [t can contain more or less than 256 entries. More entries are ignored. When an interrupt or
exception is invoked whose entry is not present, a GPF is raised that tells the number of the
missing IDT entry, and even whether it was hardware or software interrupt. There should
therefore be at least enough entries so a GPF can be caught.

Structure

http://wiki.osdev.org/Interrupt_Descriptor_Table 1/6

25.02.2015 Interrupt Descriptor Table - OSDev Wiki

The table contains 8-byte Gate entries. Each entry has a complex structure:

struct IDTDescr{
uintle_t offset_1; // offset bits 0..15
uintlé_t selector; // a code segment selector in GDT or LDT
uint8 t zero; // unused, set to ©
uint8_t type_attr; // type and attributes, see below
uintle t offset 2; // offset bits 16..31

The offset is a 32 bit value, split in two parts. The selector is a 16 bit value and must point to a valid
selector in your GDT.

type_attr is specified here:

...

E+---+---+---+---+---+---+---+---+
1P| DPL | S| GateType |
e e T R e 3

The bit fields mean:
IDT entry, Interrupt Gates
Name | Bit ;:::e Description
Offset 48..63 (1)6ffs3e1t Higher part of the offset.
P 47 Present can be set to 0 for unused interrupts or for Paging.

Descriptor | Gate call protection. Specifies which privilege Level the calling
DPL 45,46 Privilege | Descriptor minimum should have. So hardware and CPU interrupts can

Level be protected from beeing called out of userspace.
Storage | _ .
S 44 Segment | 0 for interrupt gates.
Possible IDT gate types :
0b0101 0x5 |5 80386 32 bit Task gate
T Gate Type 0b0110 0x6 6 |80286 16-bit interrupt gate
yp 0.3 0b0111 0x7 |7 | 80286 16-bit trap gate
Ob1110 OxE 14 |80386 32-bit interrupt gate
Ob1111 OxF 15|80386 32-bit trap gate
0 32.39 gn;‘sed Have to be 0.

Selector 16.31 Selector | Selector of the interrupt function (to make sense - the kernel's selector).
70,15 The selector's descriptor's DPL field has to be 0.

http://wiki.osdev.org/Interrupt_Descriptor_Table 2/6

25.02.2015 Interrupt Descriptor Table - OSDev Wiki

Offset 0..15 |Offset Lower part of the interrupt function's offset address (also known as
0..15 pointer).

1386 Interrupt Gate

The Interrupt Gate is used to specify an interrupt service routine. When you do INT 50 in assembly,
running in protected mode, the CPU looks up the 50th entry (located at 50 * 8) in the IDT. Then the
Interrupt Gates selector and offset value is loaded. The selector and offset is used to call the interrupt
service routine. When the IRET instruction is read, it returns. If running in 32 bit mode and the specified
selector is a 16 bit selector, then the CPU will go in 16 bit protected mode after calling the interrupt
service routine. To return you need to do 032 IRET, else the CPU doesn't know that it should do a 32 bit
return (reading 32 bit offset of the stack instead of 16 bit).

type_attr Type
Ob1110=0xE | 32-bit interrupt gate

0b0110=0x6 | 16-bit interrupt gate

Here are some pre-cooked type_attr values people are likely to use (assuming DPL=0):

= 32-bit Interrupt gate: Ox8E (P=1, DPL=00b, S=0, type=1110b => type_attr=1000_1110b=0x8E)
1386 Trap Gate

When an interrupt/exception occurs that corresponds to a Trap or Interrupt Gate, the CPU places the
return info on the stack (EFLAGS, CS, EIP), so the interrupt handler can resume the interrupted code by
IRET.

Then, execution is transferred to the given selector:offset from the gate descriptor.

For some exceptions, an error code is also pushed on the stack, which must be POPped before doing
IRET.

Trap and Interrupt gates are similar, and their descriptors are structurally the same, they differ only in
the "type" field. The difference is that for interrupt gates, interrupts are automatically disabled upon
entry and reenabled upon IRET which restores the saved EFLAGS.

Choosing type attr values: (See Descriptors#type_attr)

type_attr Type
Ob1111=0xf 32-bit trap gate
0b0111=0x7 | 16-bit trap gate

Here are some pre-cooked type_attr values people are likely to use (assuming DPL=0):
= 32-bit Trap gate: Ox8F (P=1, DPL=00b, S=0, type=1111b => type attr=1000 1111b=0x8F)
Thus, Trap and Interrupt gate descriptors hold the following data (other than type attr):

http://wiki.osdev.org/Interrupt_Descriptor_Table 3/6

25.02.2015

Interrupt Descriptor Table - OSDev Wiki

= 16-bit selector of a code segment in GDT or LDT

= 32-bit offset into that segment - address of the handler, where execution will be transferred

1386 Task Gate

In the Task Gate descriptor the offset values are not used. Set them to 0.

When an interrupt/exception occurs whose entry is a Task Gate, a task switch results.

"A task gate in the IDT references a TSS descriptor in the GDT. A
switch to the handler task is handled in the same manner as an ordinary
task switch. (..) The link back to the interrupted task is stored in the
previous task link field of the handler task's TSS. If an exception
caused an error code to be generated, this error code is copied to the
stack of the new task."

—Intel manual (vol.3 p.5-19)

"*NOTE* Because [A-32 tasks are not re-entrant, an interrupt-handler
task must disable interrupts between the time it completes handling the
interrupt and the time it executes the IRET instruction. This action
prevents another interrupt from occurring while the interrupt task's
TSS is still marked busy, which would cause a general-protection
(#GP) exception."

—Intel manual

Choosing type attr values: (See

type_attr
0b0101=0x5

Type
task gate

For DPL=0, type_attr=0x85=0b0101

Thus, a TSS selector is the only custom piece of data you need for a Task Gate descriptor.

Advantages over using trap/interrupt gates:

= The entire context of the interrupted task is saved automatically (no need to worry about registers)
= The handler can be isolated from other tasks in a separate address space in LDT.
» "4 new tss permits the handler to use a new privilege level () stack when handling the exception or

interrupt. If an exception or interrupt occurs when the current privilege level 0 stack is corrupted,

accessing the handler through a task gate can prevent a system crash by providing the handler

with a new privilege level 0 stack" --Intel manual

Disadvantage:

= Saving the entire task context into TSS is slower than using a trap/interrupt gate (where the

http://wiki.osdev.org/Interrupt_Descriptor_Table

4/6

25.02.2015 Interrupt Descriptor Table - OSDev Wiki

handler can save only what it needs).
= [s it that much faster if the handler does PUSHAD or pushes registers one by one?
= Does it make a difference, considering a non-dummy, non-trivial handler?

Loading/Storing

The IDT is loaded using the LIDT assembly instruction. It expects the location of a IDT description
structure:

...

Byte
' ommemmmmmmeaaas - +
o | Size
dmmm e Fmmmmm e +
. . e - +
2 Offset
dmmm e Fmmm e e TR C +

The offset is the virtual address of the table itself. The size is the size of the table subtracted by 1. This
structure can be stored to memory again with the SIDT instruction.

IDT in TA-32e Mode (64-bit IDT)

When in long or compatibility mode (once the EFER.LME flag has been set) the IDT's structure changes
slightly. The IDTR structure's (used by LIDT and SITD) base field changes to 64-bits to allow the IDT to
reside anywhere in memory, and each entry in the IDT grows by 64-bits. The first 32-bit value is the
high bits of the address, while the second is zero.

IDTR
Offset Size | Description

0 2 Limit - Maximum addressable byte in table
2 8 Offset - Linear (paged) base address of IDT

IDT Descriptor
Offset | Size | Description

2 Offset low bits (0..15)

Selector (Code segment selector)
Zero

Type and Attributes (same as before)
Offset middle bits (16..31)

Offset high bits (32..63)

Zero

o NN B~ O

AR N = =N

12

In your interrupt handler routines, remember to use IRETQ instead of IRET, as nasm won't translate that
for you. Many 64bit IDT related problems on the forum are caused by that missing 'Q'. Don't let this
happen to you.

http://wiki.osdev.org/Interrupt_Descriptor_Table 5/6

25.02.2015 Interrupt Descriptor Table - OSDev Wiki

See Also

Articles

= GDT
= [DT problems

External references

= Michal Ludvig's Intel 80386 Programmer's Reference Manual chapter 9
(http://www.logix.cz/michal/doc/i386/chp09-00.htm)

Retrieved from "http://wiki.osdev.org/index.php?title=Interrupt Descriptor Table&oldid=17410"
Categories: X86 CPU | Interrupts

= This page was last modified on 1 January 2015, at 13:11.
= This page has been accessed 113,745 times.

http://wiki.osdev.org/Interrupt_Descriptor_Table 6/6

