25.02.2015 | Cant Get Interrupts Working - OSDev Wiki

I Cant Get Interrupts Working

From OSDev Wiki

This page is a sort of TroubleShooting manual to help you getting through common interrupts
framework problems encountered by guests and members of the forum

Make sure you collected enough information about your own situation (for instance running your code
in Bochs).

Contents

= | ISR problems
= 1.1 My handler doesn't get called!? (ASM)
= 1.2 My Handler doesn't get called (C) !?
= 1.3 My handler is called but it doesn't return !?
2 IRQ problems
2.1 I'm receiving EXC9 instead of IRQ1 when striking a key ?!
2.2 I'm receiving a double fault after enabling interrupts
2.3 I'm not receiving any IRQ
2.4 1 can only receive one IRQ
2.5 When I try to enable the PIT, the keyboard doesn't work anymore
2.6 1 keep getting an IRQ7 for no apparent reason
= 2.7 what does "shift operator may only be applied to scalar values" mean ?
3 Assembly Examples
= 3.1 NASM
= 3.2 GNU Assembler
4 Problems with IDTs
5 Problems
6 IDT problems in Assembly
= 6.1 FASM notice
7 See also

ISR problems

My handler doesn't get called!? (ASM)

For this test, you need to call the interrupt yourself, by software. Don't try to get IRQ handled right from
the start before you're sure your IDT setup is correct. You need to have:

= your IDT loaded and filled properly.

= your IDT's linear address loaded in a structure together with the table's size (in bytes, iirc). Be
especially cautious if you have a Higher Half Kernel design or did not set up identity paging.

= a valid Code selector and offset in the descriptor, proper type, etc.

= a handling code at the defined offset.

see test code below

http://wiki.osdev.org/l_Cant_Get_Interrupts_Working 117

25.02.2015 | Cant Get Interrupts Working - OSDev Wiki

My Handler doesn't get called (C) !?

If you're programming the IDT setup in C, make sure the IDTR structure has been correctly understood
by your compiler. As Intel's 6 bytes structures infringe most compiler's packing rules, you'll need to use
either bitfields or packing pragmas. Use sizeof() and OFFSETOF () macros to make sure the expected
definition is used (a runtime test would be fine)

My handler is called but it doesn't return !?

Try to run it in the BOCHS and see if you get any exception report. Program all your exception to have
the same kind of behavior as the example, but displaying a character indicating the fault. Exceptions
occurring at the end of an interrupt handler are usually due to a wrong stack operation within the
handler.

= don't try to return from an exception (unless you solved its cause). Returning from a division by
zero, for instance, makes no sense at all

= pops everything you push, but no more

= make sure you didn't forget the CPU-pushed error code (for exceptions 8,10 and 14 at least)

= make sure your handler doesn't trash unexpected registers. For exceptions and hardware IRQ
handlers, no registers *at all* should be modified.

Another common source of error at this point comes from misimplementation of ISR in C. Check the
InterruptServiceRoutines page for enlightenment ...

IRQ problems

Now that you're sure an interrupt can be called and can return, you're ready to enable hardware
interrupts. As a first step, you're suggested to enable the keyboard handler only , as you'll have almost
complete control of what it does. Use the mask feature of the PIC to enable/disable some handlers.

outb(0x21,0xfd);
outb(@xal,oxff);
enable(); // asm("sti");

I'm receiving EXC9 instead of IRQ1 when striking a key ?!

You missed the PIC vector reprogramming step. Check Can I remap the PIC? page. Note that if you
remap the PIC vectors out of the IDT you'll get a GPF exception instead of any interrupt.

I'm receiving a double fault after enabling interrupts
Different symptom for the same error as above. This time caused by an timer interrupt calling vector 8.

I'm not receiving any IRQ

http://wiki.osdev.org/l_Cant_Get_Interrupts_Working 27

25.02.2015 | Cant Get Interrupts Working - OSDev Wiki

Make sure you receive software interrupts first. Also make sure you enabled the IRQ of your interest on
the PIC mask and that you enabled the cascading line (bit #2 of the master) if you're waiting for a slave
IRQ.

I can only receive one IRQ

Each IRQ needs to be acknowledged to the PIC manually by sending an EOI. You need to have

within any slave handler.
When I try to enable the PIT, the keyboard doesn't work anymore

A common mistake is that people reload the mask with exFe when they want to add timer, but doing this
actually enables only the timer and disables the keyboard (bit #1 of OxFE is set!) The correct value for
enabling both keyboard and timer 1s OxFC.

I keep getting an IRQ7 for no apparent reason

This is a known problem that cannot be prevented from happening, although there is a workaround.
When any IRQ7 is received, simply read the In-Service Register

outb(0x20, ©6x0B); unsigned char irr = inb(0x20);

is set. If it isn't, then return from the interrupt without sending an EOL.

For more information, including a more detailed explanation, see Brendan's post in this thread.

what does "'shift operator may only be applied to scalar values' mean ?

You're trying to load a 16-bits field (a part of the IDT descriptor) with a reference to a 32-bit label that is
subject to relocation. Try to replace

. isr_label: .
http://wiki.osdev.org/l_Cant_Get_Interrupts_Working 317

25.02.2015 | Cant Get Interrupts Working - OSDev Wiki

iret
bad_stuff dw isr_label & OXFFFF
dw Oxdead
dw Oxbeef

dw isr label >> 16

by something that extracts a 'pure value' from the address (e.g. the difference of two addresses are a pure
value and $$ means to NASM the start of the section)

%define BASE_OF_SECTION SOME_CONSTANT_YOU_SHOULD_KNOW
isr_label:

iret
good_stuff dw (BASE_OF _SECTION + isr_label - $$) & OXFFFF
dw Oxcafe
dw Oxbabe
dw (BASE_OF SECTION + isr_label - $$) >> 16
The role of

is to adjust the pure offset to the real situation (usually as defined in your linker script), e.g. if your
kernel get loaded at 1MB, you'll set it to 0x100000 to keep the CPU happy.

Assembly Examples

NASM

This example is made for x86 CPUs running in IA32 mode (32-bit).

int_handler:
mov ax, LINEAR_DATA_SELECTOR
mov gs, ax
mov dword [gs:0xB8000],") : '
hlt

idt:
resd 50%*2

idtr:
dw (50%8)-1
dd LINEAR_ADDRESS(idt)

testl:
lidt [idtr]
mov eax,int_handler
mov [idt+49*8],ax
mov word [idt+49*8+2],CODE_SELECTOR
http://wiki.osdev.org/l_Cant_Get_Interrupts_Working 4/7

25.02.2015 | Cant Get Interrupts Working - OSDev Wiki
: mov word [idt+49%8+4],0x8E00

shr eax, 16

mov [idt+49*8+6],ax

int 49

should display a smiley on the top-left corner ... then the CPU is halted indefinitely.
GNU Assembler

This example sets up an interrupt handler in long mode.

.text

int_handler:
movq $0x123abc, 0x0 // this places magic value "©@x123abc" at the begi
hlt

.p2align 4
idt:
.skip 50*16

idtr:
.short (50*16)-1
.quad idt

.globl do_test
do_test:
lidt idtr
movq $int_handler, %rax
mov %ax, idt+49*16
movw $0x20, idt+49*16+2 // replace 0x20 with your code section select
movw $0x8e00, idt+49*16+4
shr $16, %rax
mov %ax, idt+49*16+6
shr $16, %rax
mov %rax, idt+49%*16+8
int $49

This example differs from the previous one: it will not touch the screen, but will write the value
"0x123abc" to 0x0 memory address and halt. It may be useful when there's no screen or BIOS available.

Problems with IDTs

Many of us while OS dev'ing will encounter a problem with IDT's. Here are some solved problems with
IDT's

This is for solved problems. The unsolved ones can be found here on the Forum
(http://forum.osdev.org/viewtopic.php?f=1&t=24805)

http://wiki.osdev.org/l_Cant_Get_Interrupts_Working 5/7

25.02.2015

Problems

Please post Completed problems here.

| Cant Get Interrupts Working - OSDev Wiki

First of all, check your GDT. Keep in mind padding issues. In C this goes like:

// GCC
struct IDT reg {
//struct here

+ __attribute_ ((packed));

struct GDT_reg {
//struct here

+ __attribute_ ((packed));

// Visual C++
#pragma pack(push, 1)
struct IDT_reg {
//struct here

}s

struct GDT_reg {
//struct here

s

#pragma pack(pop)

IDT problems in Assembly

Make sure the structre is correct and you are using linear addresses.

FASM notice

Since fasm doesn't accept the normal way as described above, I will describe it. Fasm does, however,
support shl and shr, so to describe the higher part of an ISR address, we just use label shl 0x10 where
label is the name of the ISR. To define the higher part, we need to write a little more, since fasm use 64
bit, before compiling. This means that IF we just shl and shr, it will be that same as before. This is how
we are supposed to do: (label shl 0x30) shr 0x30 Here is a little example, so you can see how it works:

idt:

dw ((isrl shl 0x30) shr 0x30) ; the Low part of the address
dw ©0x8 ; selector

db ©

db 010001116b ; type

dw (isrl shr 0x10) the high part of the address

isrl:
mov ax,0xdead

http://wiki.osdev.org/l_Cant_Get_Interrupts_Working

25.02.2015 | Cant Get Interrupts Working - OSDev Wiki

See also

= [DT
= [DT problems

Retrieved from "http://wiki.osdev.org/index.php?title=I_Cant_Get Interrupts Working&oldid=17029"
Categories: Troubleshooting | FAQ | Interrupts

= This page was last modified on 11 November 2014, at 09:52.
= This page has been accessed 50,654 times.

http://wiki.osdev.org/l_Cant_Get_Interrupts_Working 77

