25.02.2015 How kernel, compiler, and C library work together - OSDev Wiki

How kernel, compiler, and C library work
together

From OSDev Wiki

Contents

1 Kernel
2 C Library
3 Compiler / Assembler
4 Linker
= 4.1 Static Linking
= 4.2 Dynamic Linking
= 4.3 Shared Libraries
= 4.4 ABI - Application Binary Interface
= 4.5 Unresolved Symbols

Kernel

The kernel is the core of an operating system. In a traditional design, it is responsible for memory
management, I/O, interrupt handling, and various other things. And even while some modern designs
like Microkernels or Exokernels move several of these services into user space, this matters little in the
scope of this document.

The kernel makes its services available through a set of system calls; how they are called and what they
do exactly differs from kernel to kernel.

C Library

Main Articles: See C Library, Creating a C Library

One thing up front: When you begin working on your kernel, you do not have a C library available. You
have to provide everything yourself, except a few pieces provided by the compiler itself. You will also
have to port an existing C library or write one yourself.

The C library implements the standard C functions (i.e., the things declared in <stdlib.h>, <math.h>,
<stdio.h> etc.) and provides them in binary form suitable for linking with user-space applications.

In addition to standard C functions (as defined in the ISO standard), a C library might (and usually does)
implement further functionality, which might or might not be defined by some standard. The standard C
library says nothing about networking, for example. For Unix-like systems, the POSIX standard defines
what is expected from a C library; other systems might differ fundamentally.

It should be noted that, in order to implement its functionality, the C library must call kernel functions.
So, for your own OS, you can of course take a ready-made C library and just recompile it for your OS -
but that requires that you tell the library how to call your kernel functions, and your kernel to actually

http://wiki.osdev.org/How_kernel,_compiler,_and_C_library_work_together 1/3



25.02.2015 How kernel, compiler, and C library work together - OSDev Wiki

provide those functions.

A more elaborate example is available in Library Calls or, you can use an existing C Library or create
your own C Library.

Compiler / Assembler

An Assembler takes (plaintext) source code and turns it into (binary) machine code; more precisely, it
turns the source into object code, which contains additional information like symbol names, relocation
information etc.

A compiler takes higher-level language source code, and either directly turns it into object code, or (as is
the case with GCC) turns it into Assembler source code and invokes an Assembler for the final step.

The resulting object code does not yet contain any code for standard functions called. If you included
e.g. <stdio.h> and used printf(), the object code will merely contain a reference stating that a function
named printf() (and taking a const char * and a number of unnamed arguments as parameters) must
be linked to the object code in order to receive a complete executable.

Some compilers use standard library functions internally, which might result in object files referencing
e.g. memset () or memcpy() even though you did not include the header or used a function of this name.
You will have to provide an implementation of these functions to the linker, or the linking will fail. The
gcce frestanding environment expects only the functions memset, memcpy, memcmp, and memmove, as
well as the libgce library. Some advanced operations (e.g. 64-bits divisions on a 32-bits system) might
involve compiler-internal functions. For GCC, those functions are residing in libgcc. The content of this
library is agnostic of what OS you use, and it won't taint your compiled kernel with licensing issues of
whatever sort.

Linker

A linker takes the object code generated by the compiler / assembler, and /inks it against the C library
(and / or libgcc.a or whatever link library you provide). This can be done in two ways: static, and
dynamic.

Static Linking

When linking statically, the linker is invoked during the build process, just after the compiler / assembler
run. It takes the object code, checks it for unresolved references, and checks if it can resolve these
references from the available libraries. It then adds the binary code from these libraries to the
executable; after this process, the executable is complete, i.e. when running it does not require anything
but the kernel to be present.

On the downside, the executable can become quite large, and code from the libraries is duplicated over
and over, both on disk and in memory.

Dynamic Linking
When linking dynamically, the linker is invoked during the loading of an executable. The unresolved

references in the object code are resolved against the libraries currently present in the system. This
makes the on-disk executable much smaller, and allows for in-memory space-saving strategies such as

http://wiki.osdev.org/How_kernel,_compiler,_and_C_library_work_together 2/3



25.02.2015 How kernel, compiler, and C library work together - OSDev Wiki

shared libraries (see below).

On the downside, the executable becomes dependent on the presence of the libraries it references; if a
system does not have those libraries, the executable cannot run.

Shared Libraries

A popular strategy is to share dynamically linked libraries across multiple executables. This means that,
instead of attaching the binary of the library to the executable image, the references in the executable are
tweaked, so that all executables refer to the same in-memory representation of the required library.

This requires some trickery. For one, the library must either not have any state (static or global data) at
all, or it must provide a separate state for each executable. This gets even trickier with multi-threaded
systems, where one executable might have more than one simultaneous control flow.

Second, in a virtual memory environment, it is usually impossible to provide a library to all executables
in the system at the same virtual memory address. To access library code at an arbitrary virtual address
requires the library code to be position independent (which can be achieved e.g. by setting the -PIC
command line option for the GCC compiler). This requires support of the feature by the binary format
(relocation tables), and can result in slightly less efficient code on some architectures.

ABI - Application Binary Interface

The ABI of a system defines how library function calls and kernel system calls are actually done. This
includes whether parameters are passed on the stack or in registers, how function entry points are
located in libraries, and other such concerns.

When using static linkage, the resulting executable depends on the kernel using the same ABI as the one
the executable was built for; when using dynamic linkage, the executable depends on the libraries' ABI
staying the same.

Unresolved Symbols

The linker is the stage where you will find out about stuff that has been added without your knowledge,
and which is not provided by your environment. This can include references to alloca(), memcpy(), or
several others. This is usually a sign that either your toolchain or your command line options are not
correctly set up for compiling your own OS kernel - or that you are using functionality that is not yet
implemented in your C library / runtime environment! You will most certainly run into trouble if you are
not using a cross-compiler and the libgcc library and have implementations of memcpy, memmove,
memset and mememp.

Other symbols, such as _udiv* or _ builtin_saveregs, are available in libgcc. If you get errors about
missing such symbols, remember that you need to link with libgcc.

Retrieved from "http://wiki.osdev.org/index.php?
title=How_kernel, compiler, and C library work together&oldid=17333"

= This page was last modified on 6 December 2014, at 15:06.
= This page has been accessed 116,220 times.

http://wiki.osdev.org/How_kernel,_compiler,_and_C_library_work_together 3/3



