25.02.2015 Higher Half Kernel - OSDev Wiki

Higher Half Kernel

From OSDev Wiki

It is traditional and generally good to have your kernel mapped in
every user process. Linux, for instance (and many other Unices) reside
at the virtual addresses OxC0000000 - OxFFFFFFFF of every address
space, leaving the range 0x00000000 - OxBFFFFFFF for user code,
data, stacks, libraries, etc. Kernels that have such design are said to be
"in the higher half" by opposition to kernels that use lowest virtual
addresses for themselves, and leave higher addresses for the
applications.

Advantages of a higher half kernel are:

= [t's easier to set up VM86 processes since the region below 1MB
is userspace.

= More generically, user applications are not dependent on how
much memory is kernel space (Your application can be linked to
0x400000 regardless of whether kernel is at OxC0000000,
0x80000000 or OxE0000000 ...), which makes ABI's nicer.

= [f your OS is 64-bits, then 32-bit applications will be able to use
the full 32-bit address space.

= 'mnemonic' invalid pointers such as OxCAFEBABE,
OxDEADBEEF, 0xDEADCODE, etc. can be used.

Initialization

Kernel Designs

Models

Monolithic Kernel
Microkernel
Hybrid Kernel
Exokernel
Nano/Picokernel
Cache Kernel
Virtualizing Kernel
Megalithic Kernel

Other Concepts

Modular Kernel
Higher Half Kernel
64-bit Kernel
Barc Bones

To setup a higher half kernel, you have to map your kernel to the appropriate virtual address. How to do
this basically depends on when you'd like your kernel to believe it's in the higher end, and when you set

up paging.

Custom Bootloader

The easiest way is to load your kernel to any physical location you wish (for instance in the lowest
1MB) and prepare page tables that will perform the appropriate translation. Let's say you loaded your
kernel at 0x00010000 to Ox0009FFFF and want it to appear at OxC0010000, you could do the following:

= Pick 3 page-aligned (0x1000-aligned) addresses where you'll put your page directory and system

tables. Make sure they are zeroed (memclr them or memset them to 0).

= Fill the lowest 256 entries of one table to set up Identity Paging for at least the BIOS and your
bootloader (it's probably best to use 1:1 mapping for the entire lowest 1MB).
= In the other table, fill entry #0x10 (#16) with 0x00010003, entry #0x11 (#17) with 0x00011003,

and so on (do this for every page your kernel has or needs).

= Fill entry #0x0 (#0) of the directory with the address of the first table (and make sure it's set to

present).

= Fill entry #0x300 (#768) of the directory with the address of the second table (and make sure it's

set to present).

When switching to Protected Mode, use this assembly example:

http://wiki.osdev.org/Higher_Half_Kernel

12



25.02.2015 Higher Half Kernel - OSDev Wiki

mov eax, physical address_of_ the_directory ; Get the physical address of
mov cr3, eax ; ... and store it in CR3.

mov eax, cr@ ; Get what's in CRO...

or eax, Ox80000001 ; ... enable protected mode and paging ...

mov cr@, eax ; ... and put the new value back in CR@O.

See Also

= | wrote a simple HigherHalf kernel (http://forum.osdev.org/viewtopic.php?t=11160)

Retrieved from "http://wiki.osdev.org/index.php?title=Higher Half Kernel&oldid=17151"
Category: Kernel

= This page was last modified on 30 November 2014, at 16:09.
= This page has been accessed 39,101 times.

http://wiki.osdev.org/Higher_Half_Kernel 2/2



