25.02.2015

Exceptions

From OSDev Wiki

Exceptions as described in this article are
generated by the CPU when an 'error’'
occurs. Some exceptions are not really
errors in most cases, such as page faults.

Exceptions are a type of interrupt.

Exceptions are classified as:

= Faults: These can be corrected and
the program may continue as if

nothing happened.
= Traps: Traps are reported

immediately after the execution of

the trapping instruction.

= Aborts: Some severe unrecoverable

€rror.

Some exceptions will push a 32-bit "error
code" on to the top of the stack, which
provides additional information about the
error. This value must be pulled from the
stack before returning control back to the
currently running program. (i.e. before

calling IRET)

Name
Divide-by-zero Error
Debug
Non-maskable Interrupt
Breakpoint
Overflow

Bound Range Exceeded

Invalid Opcode

http://wiki.osdev.org/Exceptions

Exceptions - OSDev Wiki

Contents

= | Exceptions
= 1.1 Faults
1.1.1 Divide-by-zero Error
1.1.2 Bound Range Exceeded
1.1.3 Invalid Opcode
1.1.4 Device Not Available
1.1.5 Invalid TSS
1.1.6 Segment Not Present
1.1.7 Stack-Segment Fault
1.1.8 General Protection Fault
1.1.9 Page Fault
= 1.1.9.1 Error code
1.1.10 x87 Floating-Point Exception
1.1.11 Alignment Check
1.1.12 SIMD Floating-Point Exception
= 1.2 Traps
= 1.2.1 Debug
= 1.2.2 Breakpoint
= 1.2.3 Overflow
= 1.3 Aborts
= 1.3.1 Double Fault
= 1.3.2 Machine Check
= 1.3.3 Triple Fault
= 2 Selector Error Code
= 2.1 Legacy
= 2.1.1 FPU Error Interrupt
= 2.1.2 Coprocessor Segment Overrun
= 3 See Also
= 3.1 External Links

Vector nr. Type Mnemonic Error code?
0 (0x0) Fault #DE No
1 (0x1) Fault/Trap #DB No
2 (0x2) Interrupt | - No
3 (0x3) Trap #BP No
4 (0x4) Trap #OF No
5 (0x5) Fault #BR No
6 (0x6) Fault #UD No

1/8

25.02.2015 Exceptions - OSDev Wiki

Device Not Available 7 (0x7) Fault #NM No
Double Fault 8 (0x8) Abort #DF Yes
Coprecessor-Segment-Overrun | 9 (0x9) Fault - No
Invalid TSS 10 (0xA) Fault #TS Yes
Segment Not Present 11 (0xB) Fault #NP Yes
Stack-Segment Fault 12 (0xC) Fault #SS Yes
General Protection Fault 13 (0xD) Fault #GP Yes
Page Fault 14 (OxE) Fault #PF Yes
Reserved 15 (OxF) - - No
x87 Floating-Point Exception | 16 (0x10) Fault #MF No
Alignment Check 17 (0x11) Fault #AC Yes
Machine Check 18 (0x12) Abort #MC No
SIMD Floating-Point Exception 19 (0x13) Fault #XM/#XF | No
Virtualization Exception 20 (0x14) Fault #VE No
Reserved 21-29 (0x15-0x1D) - - No
Security Exception 30 (0x1E) - #SX Yes
Reserved 31 (0x1F) - - No
Triple Fault - - - No
FPUErrorInterrupt IRQ 13 Interrupt | #FERR No
Exceptions
Faults

Divide-by-zero Error

The Divide-by-zero Error occurs when dividing any number by 0 using the DIV or IDIV instruction.
Many OS developers use this exception to test whether their exception handling code works. This
exception may also occur when the result is too large to be represented in the destination.

The saved instruction pointer points to the DIV or IDIV instruction which caused the exception.

Bound Range Exceeded

This exception can occur when the BOUND instruction is executed. The BOUND instruction compares
an array index with the lower and upper bounds of an array. When the index is out of bounds, the Bound
Range Exceeded exception occurs.

The saved instruction pointer points to the BOUND instruction which caused the exception.

Invalid Opcode

http://wiki.osdev.org/Exceptions 2/8

25.02.2015 Exceptions - OSDev Wiki

The Invalid Opcode exception occurs when the processor tries to execute an invalid or undefined
opcode, or an instruction with invalid prefixes. It also occurs when an instruction exceeds 15 bytes, but
this only occurs with redundant prefixes.

The saved instruction pointer points to the instruction which caused the exception.

Device Not Available

The Device Not Available exception occurs when an FPU instruction is attempted but there is no FPU.
This is not likely, as modern processors have built-in FPUs. However, there are flags in the CRO register
that disable the FPU/MMX/SSE instructions, causing this exception when they are attempted. This
feature is useful because the operating system can detect when a user program uses the FPU or XMM
registers and then save/restore them appropriately when multitasking.

The saved instruction pointer points to the instruction that caused the exception.
Invalid TSS

An Invalid TSS exception occurs when an invalid segment selector is referenced as part of a task which,
or as a result of a control transfer through a gate descriptor, which results in an invalid stack-segment
reference using an SS selector in the TSS.

When the exception occurred before loading the segment selectors from the TSS, the saved instruction
pointer points to the instruction which caused the exception. Otherwise, and this is more common, it
points to the first instruction in the new task.

Error code: The Invalid TSS exception sets an error code, which is a selector index.

Segment Not Present

The Segment Not Present exception occurs when trying to load a segment or gate which has it's Present-
bit set to 0. However when loading a stack-segment selector which references a descriptor which is not
present, a Stack-Segment Fault occurs.

The saved instruction pointer points to the instruction which caused the exception.

Error code: The Segment Not Present exception sets an error code, which is the segment selector index
of the segment descriptor which caused the exception.

Stack-Segment Fault

The Stack-Segment Fault occurs when:

= Loading a stack-segment referencing a segment descriptor which is not present.

= Any PUSH or POP instruction or any instruction using ESP or EBP as a base register is executed,
while the stack address is not in canonical form.

= When the stack-limit check fails.

The saved instruction pointer points to the instruction which caused the exception.

Error code: The Stack-Segment Fault sets an error code, which is the stack segment selector index
when a non-present segment descriptor was referenced. Otherwise, 0.

http://wiki.osdev.org/Exceptions 3/8

25.02.2015 Exceptions - OSDev Wiki
General Protection Fault

A General Protection Fault may occur for various reasons. The most common are:

Segment error (privilege, type, limit, read/write rights).
Executing a privileged instruction while CPL != 0.
Writing a 1 in a reserved register field.

Referencing or accessing a null-descriptor.

The saved instruction pointer points to the instruction which caused the exception.

Error code: The General Protection Fault sets an error code, which is the segment selector index when
the exception is segment related. Otherwise, 0.

Page Fault

Main article: Page fault

A Page Fault occurs when:

A page directory or table entry is not present in physical memory.

Attempting to load the instruction TLB with a translation for a non-executable page.
A protection check (privileges, read/write) failed.

A reserved bit in the page directory or table entries is set to 1.

The saved instruction pointer points to the instruction which caused the exception.

Error code

The Page Fault sets an error code:

E 31 4 0 E

R ik e e e e bt s '

| Reserved | I | R|U|W]|P| !

B I S et 3 '
Length, Name Description

P 1bit | Present When set, the page fault was caused by a page-protection violation. When not
set, it was caused by a non-present page.

W |lbit | Write When set, the page fault was caused by a page write. When not set, it was
caused by a page read.

U 1bit User When set, the page fault was caused while CPL = 3. This does not necessarily
mean that the page fault was a privilege violation.

R 1bit | Reserved |When set, the page fault was caused by reading a 1 in a reserved field.
write

I ' 1bit | Instruction | When set, the page fault was caused by an instruction fetch.
Fetch

In addition, it sets the value of the CR2 register to the virtual address which caused the Page Fault.

http://wiki.osdev.org/Exceptions 4/8

25.02.2015 Exceptions - OSDev Wiki
x87 Floating-Point Exception

The x87 Floating-Point Exception occurs when the FWAIT or WAIT instruction, or any waiting
floating-point instruction is executed, and the following conditions are true:

= CRO.NEis 1;
= an unmasked x87 floating point exception is pending (i.e. the exception bit in the x87 floating
point status-word register is set to 1).

The saved instruction pointer points to the instruction which is about to be executed when the exception
occurred. The x87 instruction pointer register contains the address of the last instruction which caused
the exception.

Error Code: The exception does not push an error code. However, exception information is available in
the x87 status word register.

Alignment Check

An Alignment Check exception occurs when alignment checking is enabled and an unaligned memory
data reference is performed. Alignment checking is only performed in CPL 3.

Alignment checking is disabled by default. To enable it, set the CR0O.AM and RFLAGS.AC bits both to
1.

The saved instruction pointer points to the instruction which caused the exception.
SIMD Floating-Point Exception

The SIMD Floating-Point Exception occurs when an unmasked 128-bit media floating-point exception
occurs and the CR4.0OSXMMEXCPT bit is set to 1. If the OSXMMEXCPT flag is not set, then SIMD
floating-point exceptions will cause an Undefined Opcode exception instead of this.

The saved instruction pointer points to the instruction which caused the exception.

Error Code: The exception does not push an error code. However, exception information is available in
the MXCSR register.

Traps
Debug

The Debug exception occurs on the following conditions:

Instruction fetch breakpoint (Fault)
General detect condition (Fault)
Data read or write breakpoint (Trap)
I/O read or write breakpoint (Trap)
Single-step (Trap)

Task-switch (Trap)

http://wiki.osdev.org/Exceptions 5/8

25.02.2015 Exceptions - OSDev Wiki

When the exception is a fault, the saved instruction pointer points to the instruction which caused the
exception. When the exception is a trap, the saved instruction pointer points to the instruction after the
instruction which caused the exception.

Error code: The Debug exception does not set an error code. However, exception information is
provided in the debug registers.

Breakpoint

A Breakpoint exception occurs at the execution of the INT3 instruction. Some debug software replace an
instruction by the INT3 instruction. When the breakpoint is trapped, it replaces the INT3 instruction
with the original instruction, and decrements the instruction pointer by one.

The saved instruction pointer points to the byte after the INT3 instruction.
Overflow

An Overflow exception is raised when the INTO instruction is executed while the overflow bit in
RFLAGS is set to 1.

The saved instruction pointer points to the instruction after the INTO instruction.

Aborts
Double Fault

A Double Fault occurs when an exception is unhandled or when an exception occurs while the CPU is
trying to call an exception handler. Normally, two exception at the same time are handled one after
another, but in some cases that is not possible. For example, if a page fault occurs, but the exception
handler is located in a not-present page, two page faults would occur and neither can be handled. A
double fault would occur.

The saved instruction pointer is undefined. A double fault cannot be recovered. The faulting process
must be terminated.

In several starting hobby OSes, a double fault is also quite often a misdiagnosed IRQO in the cases
where the PIC hasn't been reprogrammed yet.

Machine Check

The Machine Check exception is model specific and processor implementations are not required to
support it. It uses model-specific registers to provide error information. It is disabled by default. To
enable it, set the CR4.MCE bit to 1.

Machine check exceptions occur when the processor detects internal errors, such as bad memory, bus
errors, cache errors, etc.

The value of the saved instruction pointer depends on the implementation and the exception.

Triple Fault

http://wiki.osdev.org/Exceptions 6/8

25.02.2015

Main article: Triple Fault

Exceptions - OSDev Wiki

The Triple Fault is not really an exception, because it does not have an associated vector number.

Nonetheless, a triple fault occurs when an exception is generated when attempt to call the double fault
exception handler. It results in the processor resetting. See the main article for more information about
possible causes and how to avoid them.

Selector Error Code

...

131 16 15 3.2 1 o
| Reserved | index | 7ol | € | 5
Length Name Description
E I bit | External When set, the exception originated externally to the processor.
Tbl | 2bits |IDT/GDT/LDT table | This is one of the following values:
Value Description
0b00 The Selector Index references a descriptor in the GDT.
0b01 The Selector Index references a descriptor in the IDT.
0b10 | The Selector Index references a descriptor in the LDT.
0b11 The Selector Index references a descriptor in the IDT.
Index | 13 bits | Selector Index The index in the GDT, IDT or LDT.
Legacy

The following exceptions happen on outdated technology, but are no longer used or should be avoided.
They apply mostly to the intel 386 and earlier, and might include CPUs from other manufacturers
around the same time.

FPU Error Interrupt

In the old days, the floating point unit was a dedicated chip that could be attached to the processor. It
lacked direct wiring of FPU errors to the processor, so instead it used IRQ 13, allowing the CPU to deal

with errors at it's own leasure. When the 486 was developed and multiprocessor support was added, the

FPU was embedded on die and a global interrupt for FPUs became undesirable, instead getting an option
for direct error handling. By default, this method is not enabled at boot for backwards compatibility, but
an OS should update the settings accordingly.

Coprocessor Segment Overrun

When the FPU was still external to the processor, it had separate segment checking in protected mode.
Since the 486 this is handled by a GPF instead like it already did with non-FPU memory accesses.

http://wiki.osdev.org/Exceptions

7/8

25.02.2015 Exceptions - OSDev Wiki

See Also

External Links

= Intel® 64 and [A-32 Architectures Software Developer's Manual
(http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-manual-325462.pdf) , Volume 3 (System Programming Guide), Chapter 6
(Interrupt and exception handling)

Retrieved from "http://wiki.osdev.org/index.php?title=Exceptions&oldid=16667"
Category: Interrupts

= This page was last modified on 31 August 2014, at 08:38.
= This page has been accessed 38,202 times.

http://wiki.osdev.org/Exceptions 8/8

