25.02.2015 Drawing In Protected Mode - OSDev Wiki

Drawing In Protected Mode

From OSDev Wiki

Now that you know how you can easily write text to the screen using Hardware VGA support, you
might be wondering how you'll be able to display nice images, windows, menus, icons, fancy cursors
and buttons, etc.

Well, to quote Curufir, "Switch to a graphical mode and write directly in video memory".

Contents

= | Graphics Modes
2 Switching
3 Locating Video Memory
4 Plotting Pixels
= 4.1 Location
= 4.2 Color
= 4.3 Optimizations
5 Drawing Text
= 5.1 Font Encoding
= 5.2 Optimizations
6 See Also

Graphics Modes

Main article: Getting VBE Mode Info

Well the VGA (And VESA) modes can be selected using the standard BIOS interrupt 0x10. Int 0x10
(http://www.ctyme.com/intr/int-10.htm) seems like a decent enough reference for int 0x10 (No VESA
extension) while VESA (http://www.vesa.org/) contains the various VESA standards.

Vga is limited to a 640x480x16, VESA (Depending on your card) can present much higher resolutions.

Switching

The cleanest way to set up your video mode is to go through the video BIOS. It can be performed
through the regular Int exie interface, or through the (optional) Protected mode interface offered by
VBE3. As you can guess, Int ex1e requires a 16-bit environment, so you can only use it in Real Mode
or Virtual 8086 Mode

Practically, the options are (in order of difficulty):

= You set up the mode you want at early stage (in the bootloader) before entering protected mode.
= You let GRUB do the switch for you. (Currently only works with patched GRUB
(http://www.smksoftware.co.za/software/vbe-grub/) , or GRUB 2

http://wiki.osdev.org/Drawing_In_Protected_Mode 117

25.02.2015 Drawing In Protected Mode - OSDev Wiki

(http://www.gnu.org/software/grub/grub-2.en.html) . You may download the patches
directly from here (http://www.smksoftware.co.za/cgi-bin/cgit/vbe grub.git/tree) .)
= You switch back to Real Mode or Unreal Mode for setting the proper video mode (Napalm at
rohitab.com (http://www.rohitab.com/discuss/topic/35103-switch-between-real-mode-and-
protected-mode/) has a neat little function for reference.)
You write a VGA driver that can do low-resolution modes on practically all hardware
You use the PMID from VBES3, if present
You set up a V8086 monitor that will execute the mode-switching code
You run some software code translation tool to produce pmode code out of bios rmode code.
(SANIK is on the catch (http://www.osdev.org/phpBB2/viewtopic.php?t=10321))
= You write a driver for your specific graphics card

Locating Video Memory

For standard VGA video modes the video memory will either be at address exAeeee or exsgeee. To find
out which one look at the following table (quoting

http://www.uv tietgen.dk/staff/mlha/PC/Prog/ ASM/INT/INT10.htm): "text" means exBgeee, CGA
graphics modes are also at 0xBg8eee, and VGA/EGA is at exAee00. Note that most EGA modes (and high
res VGA modes) use several bit planes so you won't be able to use all the colors by simply writing to
video memory.

00 | text 40*25 16 color (mono)
01 |text 40*25 16 color

02 text 80*25 16 color (mono)
03 |text 80*25 16 color

04 | CGA 320*200 4 color

05 | CGA 320*200 4 color (m)
06 |CGA 640*200 2 color

07 | MDA monochrome text 80*25
08 PCjr

09 PCjr

0A | PCjr

0B reserved

0C reserved

0D EGA 320*200 16 color

OE EGA 640*200 16 color

OF |EGA 640*350 mono

10 |EGA 640*350 16 color

11 | VGA 640*480 mono

12 | VGA 640%480 16 color

13 | VGA 320*200 256 color

http://wiki.osdev.org/Drawing_In_Protected Mode

25.02.2015 Drawing In Protected Mode - OSDev Wiki

For VESA modes, the framebuffer address is stored in the mode info block. This is the physical address
of the linear framebuffer (it's not a 16-bit far pointer but a 32-bit linear pointer) : if you use paging, you
have to map it somewhere to use it.

Plotting Pixels

Location

Let's say you want to plot a pixel in red in the middle of your screen. The first thing you have to know is
where the middle of the screen is. In 320x200x8 (mode 13), this will be at 100x320+160 = 32160. In
general, your screen can be described by:

width how many pixels you have on a horizontal line

height how many horizontal lines of pixels are present

pitch how many bytes of VRAM you should skip to go one pixel down
depth how many bits of color you have

"pixelwidth" ' how many bytes of VRAM you should skip to go one pixel right.

"pitch" and "width" may seem redundant at first sight but they aren't. It's not rare once you go to higher
(and exotic) resolutions to have e.g. 8K bytes per line while your screen is actually 1500 pixels wide
(32-bits per pixel). The good news is that it allows smooth horizontal scrolling (which is mainly useful
for 2D games :P)

Pitch and pixel width are usually announced by VESA mode info. Once you know them, you can
calculate the place where you plot your pixel as:

The second thing to know is what value you should write for "red". This depends on your screen setup,
again. In EGA mode, you have a fixed palette featuring dark-red (color 4) and light-red (color 12). Yet,
EGA requires you to plot each bit of that on different pixel plane, so refer to EGA programming
tutorials if you really want such modes supported. In conventional 320x200x8 VGA mode, you have the
same colours 4 and 12 as in EGA so you would plot your red pixel with

Yet, in VGA, the palette is reprogrammable (as you can learn in FreeVGA documents), so virtually any
value between 0..255 could be 'red' if you program the palette so :P

Finally, in VESA modes, you usually have truecolor or hicolor, and in both of them, you have to give
independent red, green and blue values for each pixel. modeinfo will (again) instruct you of how the
RGB components are organized in the pixel bits. E.g. you will have xRRRRRGGGGGBBBBB for 15-bits mode,
meaning that #ff0000 red is there ox78ee, and #808080 grey is ox4210 (pickup pencil, draw the bits and
see by yourself)

http://wiki.osdev.org/Drawing_In_Protected_Mode 317

25.02.2015 Drawing In Protected Mode - OSDev Wiki

/* only valid for 800x600x16M */
static void putpixel(unsigned char* screen, int x,int y, int color) {
unsigned where = x*3 + y*2400;
screen[where]| = color & 255; // BLUE
screen[where + 1] (color >> 8) & 255; // GREEN
screen[where + 2] (color >> 16) & 255; // RED

}

/* only valid for 800x600x32bpp */
static void putpixel(unsigned char* screen, int x,int y, int color) {
unsigned where = x*4 + y*3200;
screen[where]| = color & 255; // BLUE
screen[where + 1] = (color >> 8) & 255; // GREEN
screen[where + 2] = (color >> 16) & 255; // RED

Optimizations

It can be tempting from here to write fill rect, draw_hline, draw_vline, etc. from calls to putpixel ...
don't. Drawing a filled rectangle means you access successive pixels and then advance by "pitch -

rect width" to fill the next line. If you do a "for(y=100;y<200;y++) for(x=100;x<200;x++) putpixel
(screen,x,y,RED);" loop, you'll recompute 'where' about 10,000 times. Even if the compiler has done
good job to translate y*3200 into adds and shifts instead of multiplication, it's silly to run that so much
time while you could do

static void fillrect(unsigned char *vram, unsigned char r, unsigned char
unsigned char *where = vram;
int i, j;

(1 =0; 1< w; i++) {
(J =05 3 <h; j++) {
//putpixel(vram, 64 + j, 64 + 1, (r << 16) + (g << 8) + b);
where[j*4] = r;
where[j*4 + 1] = g;
where[j*4 + 2] = b;
}
where+=3200;

That should be enough to get you started coding (or googling for) a decent video library.

Drawing Text

http://wiki.osdev.org/Drawing_In_Protected_Mode 4/7

25.02.2015 Drawing In Protected Mode - OSDev Wiki

Once in graphic mode, you no longer have the BIOS or the hardware to draw fonts for you. The basic
idea is to have font data for each character and use it to plot (or not to plot) pixels. There are plenty of
ways to store those fonts depending on whether they have multiple colors or not, alpha channel or not
etc. What you will basically have, however is:

// holding what you need for every character of the set
font_char* font_data[CHARS];

// rendering one of the character, given its font _data
draw_char(screen, where, font_char*);

draw_string(screen, where, char* input) {
(*input) {
draw_char(screen,where,font_data[input]);
where += char_width;
input++;

}

draw_char(screen, where, font_char*) {
(1 =0; 1< 8; 1++) {
(i=8;1>0; i--) {

J++;
((font_char[l] & (1 << 1i))) {
c = cl;
put_pixel(j, h, c);
}
}
h++;
Jj=x
}
}
Font Encoding

The most common encoding that allows you not to overwrite the background over which you draw your
text is the font bitmap, that is, an "A" character will e.g. be encoded as

1
O XXL L. = 0%128+0%64+0%32+1%16+1%8+0%4+0%2+0%1 = 0x18
L XXXX. . = 0x3C '
.XX..XX. = Ox66 !
XXXXXX. = OX7E '
XX..XX. = Ox66 :
1.XX. . XX. = Ox66

...

In which case you test each bit of the font data to tell whether it's 1 or 0 and only put the pixel ifit's 1.
For larger fonts you might want to use RLE encoding instead, for instance. Finally, state-of-the-art true-
type fonts will require you to support the "freetype" library.

http://wiki.osdev.org/Drawing_In_Protected_Mode 5/7

25.02.2015 Drawing In Protected Mode - OSDev Wiki

Optimizations

Use of a "put_pixel()" function is almost always a performance problem. For an 8 x 8 character you can
find out the address of the first (top left) pixel and increment it to get the address of the next pixel in the
row, and add the number of bytes per line to get the address of the next row. This is much faster than
calculating "address = video_address + y * horizontal resolution + x" 64 times (per character).

However, it's even faster to work on more than one pixel at a time. If you look at the font encoding
above you'll notice that there's an 8-bit number for each row of the character. This 8-bit number can be
used as the index in a lookup table containing masks. For example, for 8 bits per pixel you could do 8
pixels at a time, like this:

uint32 t font_data lookup_table[1l6] = {
0x00000000 ,
OXO000000OFF,
OX0000FF00,
OXO00OFFFF,
Ox00FF0000,
OXO0FFOOFF,
OX00FFFFO0,
OXO0FFFFFF,
OxFF000000,
OxXFFOOOOFF,
OxXFFOOFFO0Q,
OXFFOOFFFF,
OxXFFFFO000,
OXFFFFOOFF,
OXFFFFFFoOQ,
OXFFFFFFFF

}

draw_char(uint8 t *where, uint32_t character, uint8 t foreground_colour,
int row;
uint8 t row_data;
uint32 t maskl, mask2;
uint8 t *font_data_for_char = &system_font_data_address[character * ¢
uint32 t packed_foreground = (foreground << 24) | (foreground << 16)
uint32 t packed_background = (background << 24) | (background << 16)

(row = @; row < 8; row++) {

row_data = font_data_for_char[row];

maskl = font_data lookup table[row data >> 16];

mask2 = font_data_lookup_table[row_data & ©xOF];

*(uint32_t *)where = (packed_foreground & maskl) | (packed backgr
*(uint32_t *)(&where[4]) = (packed_foreground & mask2) | (packed.
where += bytes per_line;

http://wiki.osdev.org/Drawing_In_Protected_Mode 6/7

25.02.2015 Drawing In Protected Mode - OSDev Wiki

See Also

= Extra Notes
= Covers basically the same, and is ASM-oriented. (http://bos.asmhackers.net/forum/viewtopic.php?
1d=65)

Retrieved from "http://wiki.osdev.org/index.php?title=Drawing_In_Protected Mode&oldid=17193"
Categories: Video | Graphical Ul

= This page was last modified on 1 December 2014, at 15:03.
= This page has been accessed 80,351 times.

http://wiki.osdev.org/Drawing_In_Protected_Mode 77

