25.02.2015 Detecting CPU Speed - OSDev Wiki

Detecting CPU Speed

From OSDev Wiki

Contents

1 What is CPU Speed
2 General Method
= 2.1 Waiting for a given amount of time
= 2.2 Knowing how many cycles your loop takes
= 2.3 RDTSC Instruction Access
= 2.4 Working Example Code
= 2.5 Without Interrupts
3 Asking the SMBios for CPU speed
= 3.1 SMBios Processor Information
= 3.2 Getting the SMBIOS Structure
4 Links
= 4.1 Related threads in the forum
= 4.2 Other resources
= 4.2.1 Regarding SMBIOS

What is CPU Speed

There are several different things that could be called "CPU speed":

1. how quickly it can execute code (e.g. instructions per second)
2. how fast its clock is running (e.g. cycles per second)

How quickly a CPU can execute code is important for determining the CPU's performance. How fast a
CPU's clock is running is only useful for specific cases (e.g. calibrating the CPU's TSC to use for
measuring time).

There are also several different measurements for these different "CPU speeds":

best case
nominal case
average case
current case
worst case

Nk W=

For example, if you look at a modern Core i7 CPU (with turbo-boost, power management and hyper-
threading), the best case instructions per second would occur when there's no throttling/power saving at
all, only one logical CPU is running (turbo-boost activated and hyper-threading not being used), you're
executing simple instructions with no dependencies in a loop that fits in the CPU's "loop buffer", there
are no branch mispredictions, and there are no accesses to memory (no data being transferred to/from
caches or RAM). The worst case instructions per second would be the exact opposite; and may be
several orders of magnitude worse (e.g. a best case of 4 billion instructions per second and a worst case
of 100 million instructions per second). The nominal instructions per second is an estimation of

http://wiki.osdev.org/Detecting_CPU_Speed 117

25.02.2015 Detecting CPU Speed - OSDev Wiki

"normal" - e.g. the normal average instructions per second you'd expect (note: "nominal cycles per
second" is used more often). All of these things are fixed values - a specific CPU always has the same
best case, worst case and nominal case, and these values don't change depending on CPU load, which
mstructions are/were executed, etc.

The current instructions per second is the instructions per second at a specific instant in time and must
be somewhere between the best and worst cases. It can't actually be measured, but can be estimated by
finding the average instructions per second for a very short period of time. The average case is
something that has to be measured. Both the current instructions per second and the average instructions
per second depend heavily on the code that was running. For example, the average instructions per
second for a series of NOP instructions may be much higher that the average instructions per second for
a series of DIV instructions.

General Method

In order to tell what's the CPU speed, we need two things:

1. being able to tell that a given (precise) amount of time has elapsed.
2. being able to know how much 'clock cycles' a portion of code took.

Once these two sub-problems are solved, one can easily tell the CPU speed using the following :

prepare_a_timer(X milliseconds ahead);
Ewhile (timer has not fired) {

' inc iterations_counter;

i

lcpuspeed_mhz = (iteration_counter * clock_cycles_per_iteration)/1000;

Note that except for very special cases, using a busy-loop (even calibrated) to introduce delays is a bad
idea and that it should be kept for very small delays (nano or micro seconds) that you must comply when
programming hardware only.

Also note that PC emulators (like BOCHS, for instance) are rarely realtime and that you shouldn't be
surprised if your clock appears to run faster than expected on those emulators.

Waiting for a given amount of time

There are two circuits in a PC that allows you to deal with time: the PIT (Programmable Interval Timer,
8253 iirc) and the RTC (Real Time Clock). The PIT is probably the better of the two for this task.

The PIT has two operating mode that can be useful for telling the cpu speed:

1. the periodic interrupt mode (0x36), in which a signal is emitted to the interrupt controller at a
fixed frequency. This is especially interesting on PIT channel 0 which is bound to IRQO on a PC.

2. the one shot mode (0x34), in which the PIT will decrease a counter at its top speed (1.19318
MHz) until the counter reaches zero.

Whether or not an IRQ is fired by channel(in 0x34 mode should be checked

http://wiki.osdev.org/Detecting CPU_Speed 27

25.02.2015 Detecting CPU Speed - OSDev Wiki

Note that theoretically, one shot mode could be used with a _polling approach, reading the current
count on the channel's data port, but I/O bus cycles have unpredictable latency and one should make sure
the timestamp counter is not affected by this approach.

Knowing how many cycles your loop takes

This step depends on your CPU. On 286, 386 and 486, each instruction took a well-known and
deterministic amount of clock cycles to execute. This allowed the programmer to tell exactly how many
cycles a loop iteration took by looking up the timing of each instruction and then sum them up.

Since the multi-pipelined architecture of the Pentium, however, such numbers are no longer
communicated (for a major part because the same instruction could have variable timings depending on
its surrounding, which makes the timing almost useless).

It is possible to create code which is exceptionally pipeline hostile such as:

Xor eax,edx
xor edx,eax
Xor eax,edx
xor edx,eax

A simple xor instruction takes one cycle, and it's guaranteed that the processor cannot pipeline this code
as the current instructions operands depend on the results from the last calculation. One can check that,
for a small count (tested from 16 to 64), RDTSC will show the instruction count is almost exactly
(sometimes off by one) the cycles count. Unfortunately, when making the chain longer you'll start
experiencing code cache misses, which will ruin the whole process.

E.g. looping on a chain of 1550 XORs (http://www.sylvain-ulg.be.tf/resources/speed.c) may require a
hundred of iterations before it stabilizes around 1575 clock cycles on a AMDx86-64, and I'm still
waiting it to stabilize on my Pentium3

Despite this inaccuracy it gives relatively good results across the whole processor generation given a
reasonably accurate timer but if very accurate measurements are needed the next method should prove
more useful.

A Pentium developer has a much better tool to tell timings: the Time Stamp Counter : an internal
counter that can be read using RDTSC special instruction

rdtscpm1.pdf (http://www.math.uwaterloo.ca/~~jamuir/rdtscpm1.pdf) explains how that feature can be
used for performance monitoring and should provide the necessary information on how to access the
TSC on a Pentium

RDTSC Instruction Access

The presence of the Time Stamp Counter (and thus the availability of RDTSC instruction) can be
detected through the [CPUID] instruction. When calling CPUID with eax=1, you'll receive the features
flags in edx. TSC is the bit #4 of that field.

http://wiki.osdev.org/Detecting_CPU_Speed 317

25.02.2015 Detecting CPU Speed - OSDev Wiki

Note that prior to use the CPUID instruction, you should also make sure the processor support it by
testing the 'ID' bit in eflags (this is 0x200000 and is modifiable only when CPUID instruction is
supported. For systems that doesn't support CPUID, writing a '1" at that place will have no effect)

In the case of a processor that does not support CPUID, you'll have to use more eflags-based tests to tell
if you're running on a 486, 386, etc. and then pick up one of the 'calibrated loops' for that architecture
(8086 through 80486 may have variable instruction timings).

Working Example Code

There is a Real Mode Intel-copyrighted example in the above-mentioned application note ... Here comes
another code submitted by DennisCGC that will give the total measured frequency of a Pentium
processor.

Some notes:

= jrq0 _count is a variable, which increases each time when the timer interrupt is called.

= in this code it's assumed that the [PIT] is programmed to 100 hz (of course, I give the formula
about how to calculate it

= it's assumed that the command CPUID is supported.

;__get speed :
sfirst do a cpuid command, with eax=1
mov eax,l1

cpuid
test edx,byte 0x10 ; test bit #4. Do we have TSC ?
jz detect _end ; ho ?, go to detect _end

swait until the timer interrupt has been called.
mov ebx, ~[irqg@ count]

5 wailt 1rqo_ :

cmp ebx, ~[irg@ count]

jz wait_irqo

rdtsc ; read time stamp counter

mov ~[tscLoDword], eax

mov ~[tscHiDword], edx

add ebx, 2 ; Set time delay value ticks.

; remember: so far ebx = ~[1rq@]-1, so the next tick 1is
; two steps ahead of the current ebx ;)

;__walt _for elapsed ticks__:

cmp ebx, ~[irg@ _count] ; Have we hit the delay?

jnz wait_for_elapsed_ticks

rdtsc

sub eax, ~[tscLoDword] ; Calculate TSC

sbb edx, ~[tscHiDword]

;5 f(total_ticks_per _Second) = (1 / total_ticks_per _Second) * 1,000, 06¢

http://wiki.osdev.org/Detecting_CPU_Speed 4/7

25.02.2015 Detecting CPU Speed - OSDev Wiki

; This adjusts for MHz.

; so for this: f(1e0) = (1/100) * 1,000,000 = 10000
mov ebx, 10000

div ebx

; ax contains measured speed 1in MHz

mov ~[mhz], ax

See the intel manual (see links) for more information.

- bugs report are welcome. IM to DennisCGC (http://www.mega-tokyo.com/forum/index.php?
action=viewprofile;user=DennisCGc)

Without Interrupts

I'd be tempted to say 'yes', though I haven't gave it a test nor heard of it elsewhere so far. Here is the
trick:

disable() // disable interrupts (if still not done)
outb(0x43,0x34); // set PIT channel © to single-shot mode
outb(0x40,0);

outb(0x40,0); // program the counter will be 6x10000 - n after n tic
long stsc=CPU::readTimeStamp();

(int i=0x1000;i>0;i--);
long etsc=CPU: :readTimeStamp();
outb(0x43,0x04); // read PIT counter command ??
byte lo=inb(0x40);
byte hi=inb(0x40);

Now, we know that
= ticks=(0x10000 - (hi*256+10)) periods of 1/1193180 seconds have elapsed at least and no more
than ticks+1.
= etsc-stsc clock cycles have elapsed during the same time.

Thus (etsc-stsc)*1193180 / ticks should be your CPU speed in Hz ...

As far as 1 can say, 0x1000 iterations lead to 10 PIT ticks on a 1IGHz CPU and a bit less than 0x8000
ticks on the same CPU running BOCHS. This certainly means that on very high speed systems, the
discovered speed may not be accurate at all, or worse, less than 1 tick could occur ...

This technique is currently under evaluation in [the forum|Forum:5849]

- hope you like my technique /PypeClicker

Asking the SMBios for CPU speed

http://wiki.osdev.org/Detecting_CPU_Speed 5/7

25.02.2015 Detecting CPU Speed - OSDev Wiki

The SMBios (System Management BIOS) Specification addresses how motherboard and system
vendors present management information about their products in a standard format by extending the
BIOS interface on Intel architecture systems. The information is intended to allow generic
instrumentation to deliver this information to management applications that use DMI, CIM or direct
access, eliminating the need for error prone operations like probing system hardware for presence
detection.

SMBios Processor Information

A Processor information (type 4) structure describes features of the CPU as detected by the SMBios.
The exact structure is depicted in section 3.3.5 (p 39) of the standard
(http://www.dmtf.org/standards/documents/SMBIOS/DSP0134.pdf) . Within that information you will
find the processor type, family, manufacturer etc. and also:

= the External Clock (bus) frequency, which is a word at offset 0x12,

= the Maximum CPU speed in MHz, which is a word at offset 0x14 (e.g. 0xe9 is a 233MHz
processor),

= the Current CPU speed in MHz, (word at offset 0x16).

Getting the SMBIOS Structure

SMBios provide a _Get SMBIOS Information_ function that tells you how many structures exists. You
can then use _Get SMBIOS Structure function to read processor information.

As an alternative, you can locate the SMBIOS Entry Point and then traverse manually the SMBIOS
structure table, looking for type 4.

All this is depicted in 'Accessing SMBIOS Information' structure of the standard (p 11).

The SMBIOS Entry Point structure, described below, can be located by application software by
searching for the anchor-string on paragraph (16-byte) boundaries within the physical memory address
range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate anchor string that is
used by some existing DMI browsers.

00-03 | Anchor String (SM_ or 5f 53 4d 5%)
04 Checksum

05 Length
06 major version
07 minor version

08-09 | max structure size

0A entry point revision

0B-OF | formatted area

10-14 | _DMI signature

15 intermediate checksum

16-17 | structure table length

18-1B | structure table (physical) address

1C-1D number of SMBIOS structures
http://wiki.osdev.org/Detecting CPU_Speed 6/7

25.02.2015 Detecting CPU Speed - OSDev Wiki

1E SMBIOS revision (BCD)

I don't feel like re-explaining the PnP calling convention etc. as chances are it will be useless in
Protected Mode ...

Links

Related threads in the forum

Forum:5849

Forum:767

Forum:922

Forum:8949 featuring info on bogomips, how linux does it and durand's code.

Other resources

= http://cs.usfca.edu/~cruse/cs630s04/lesson23.ppt, a crash course on PIT, and how to use it to
compute CPU speed.

= http://www.sandpile.org/post/msgs/20004561.htm

= http://www.midnightbeach.com/jon/pubs/rdtsc.htm

= ftp://download.intel.com/support/processors/procid/

especially section 12: "Operating Frequency" on page 29 of 24161815.pdf
(ftp://download.intel.com/support/processors/procid/24161815.pdf)

Regarding SMBIOS

= http://www.dmtf.org/standards/smbios
= http://www.dmtf.org/standards/documents/SMBIOS/DSP0134.pdf
= http://www.pcpitstop.com/fag/smbios.asp

Retrieved from "http://wiki.osdev.org/index.php?title=Detecting CPU_Speed&oldid=15576"
Category: X86 CPU

= This page was last modified on 10 February 2014, at 21:53.
= This page has been accessed 46,264 times.

http://wiki.osdev.org/Detecting_CPU_Speed 77

